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Abstract. Using higher topos theory, we explore the obstruction to the Čech-de Rham map being
an isomorphism in each degree for diffeological spaces. In degree 1, we obtain an exact sequence
which interprets Iglesias-Zemmour’s construction [Igl23] in∞-stack cohomology. We obtain new
exact sequences in all higher degrees. These exact sequences are constructed using homotopy
pullback diagrams that include the∞-stack classifying higher R-bundle gerbes with connection.
We also obtain a conceptual and succinct proof that the ∞-stack cohomology of the irrational
torus TK for K ⊂ R a diffeologically discrete subgroup, agrees with the group cohomology of K
with values in R. Finally, for a Lie group G, we prove that the groupoid of diffeological principal
G-bundles with connection one obtains via higher topos theory is equivalent to the groupoid of
diffeological principal G-bundles with connection defined in [Wal12].
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1. Introduction

Classical differential geometry involves the study of finite dimensional smooth manifolds.
As a theory, it has many achievements. One of its most celebrated is the Čech-de Rham Theo-
rem, more commonly known as the de Rham Theorem1. The Čech-de Rham Theorem, proven
in 1931 by de Rham [deR31], states that if M is a finite dimensional smooth manifold, then
there is an isomorphism

(1) Hk
dR(M) � Ȟk(M,Rδ),

where Hk
dR(M) denotes the de Rham cohomology of M, and Ȟk(M,Rδ) denotes the Čech coho-

mology ofM with values in R
δ, the constant sheaf on the discrete group of real numbers. There

are many good textbook accounts of the Čech-de Rham Theorem, such as [BT+82, Chapter II]
and [GQ22, Chapter 9]. The de Rham cohomology of a finite dimensional smooth manifold
M is constructed using its smooth structure, but the Čech-de Rham Theorem shows that the
de Rham cohomology of M is independent of this smooth structure and depends only on the
topology of M.

CUNY Graduate Center, Email address: eminichiello@gradcenter.cuny.edu

1We call it the Čech-de Rham Theorem because some authors use “the de Rham Theorem” to refer to the iso-
morphism between de Rham cohomology and singular cohomology.
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2 THE DIFFEOLOGICAL ČECH-DE RHAM OBSTRUCTION

Diffeology is a modern framework for differential geometry whose main objects of study are
diffeological spaces, encompassing smooth manifolds, orbifolds, and mapping spaces. The cat-
egory of diffeological spaces is better behaved than the category of finite dimensional smooth
manifolds, indeed the category of diffeological spaces is complete, cocomplete and cartesian
closed [Igl13]. This makes diffeological spaces attractive to geometers who study spaces that
are not finite dimensional smooth manifolds. However, this generalization comes at the cost
of losing many of the theorems and constructions of classical differential geometry2. Much
contemporary work has gone into extending these constructions and theorems to diffeological
spaces. The textbook [Igl13] by Iglesias-Zemmour has in particular pushed the theory quite
far, defining differential forms, de Rham cohomology, singular cohomology, fiber bundles, and
smooth homotopy groups of diffeological spaces amongst many other contributions.

In [Igl88], Patrick Iglesias-Zemmour proved that the Čech-de Rham Theorem does not hold
in general for diffeological spaces. Interestingly, this result was written as a preprint in French
in the late 80s and was only recently published in English as [Igl23]. Furthermore Iglesias-
Zemmour obtained an exact sequence

0→H1
dR(X)→ Ȟ1

P IZ(X,Rδ)→ dE1,0
2 (X)

c1−−→H2
dR(X)→ Ȟ2

P IZ(X,Rδ)

which is a receptacle for the obstruction to the Čech-de Rham Theorem. The group dE1,0
2 (X)

is the subgroup of the group of isomorphism classes of diffeological principal R-bundles that
admit a connection. If this group is trivial, as it is for all finite dimensional smooth manifolds,
then H1

dR(X) � Ȟ1
P IZ(X). However, the situation for higher degrees is not addressed in [Igl23].

Iglesias-Zemmour writes “We must acknowledge that the geometrical natures of the higher ob-
structions of the De Rham theorem still remain uninterpreted. It would be certainly interesting
to pursue this matter further” [Igl23, Page 2]. In this paper, we obtain such an interpretation
of the higher obstructions.

In [Min22], we introduced a generalization of Čech cohomology for diffeological spaces that
we call∞-stack cohomology. If X is a diffeological space and A is a diffeological abelian group,
then Ȟk

∞(X,A) denotes the kth∞-stack cohomology of X with values in A.
Currently, there are four definitions of Čech cohomology for diffeological spaces in the liter-

ature. They are Iglesias-Zemmour’s cohomology from [Igl23], which we call PIZ cohomology,
there is ∞-stack cohomology [Min22], there is Krepski-Watts-Wolbert cohomology [KWW21]
and there is Ahmadi’s cohomology [Ahm23]. In [Min22, Section 5.3], the first three Čech coho-
mologies were compared, and some relationships deduced, but it is currently unknown if any
of the above cohomology theories agree in general.

This paper is a sequel to [Min22], where we explored the connection between diffeological
spaces and higher topos theory to study diffeological principal G-bundles. When G is a dif-
feological group, not necessarily abelian, it is still possible to define ∞-stack cohomology in
degree 1, Ȟ1

∞(X,G). We proved [Min22, Corollary 6.9] that degree 1 ∞-stack cohomology is
in bijection with isomorphism classes of diffeological principal G-bundles over X. In fact, we
obtained a much stronger result by showing that the nerve of the groupoid of diffeological
principal G-bundles is weak equivalent to the nerve of the category of G-principal∞-bundles
on X [Min22, Theorem 6.8].

In this paper, we study two cases where the tools of higher topos theory help us better under-
stand diffeological spaces. The first case is studying the ∞-stack cohomology of the irrational
torus. The irrational torus was the first example of a nontrivial diffeological space with trivial
underlying topology, see [Igl20]. In [Igl23], Iglesias-Zemmour proved that if K ⊂ R is a dif-
feologically discrete subgroup, then the PIZ cohomology of the irrational torus TK = R/K is
isomorphic to the group cohomology of K with values in R. However, his proof of this, [Igl23,
Section II], is computational. In Section 4, we prove

2Many of these theorems are lost because not all diffeological spaces have partitions of unity, a crucial ingredient
to many theorems in differential geometry.
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Theorem 4.4. There is an isomorphism

Ȟn
∞(TK ,R

δ) �Hn
grp(K,Rδ)

of abelian groups, for every n ≥ 0, where R
δ denotes the discrete group of real numbers, and

where Hn
grp(K,Rδ) denotes the group cohomology of K with coefficients in R

δ.

Theorem 4.4 supports the conjecture that PIZ cohomology and ∞-stack cohomology agree.
The proof of Theorem 4.4 is short and conceptual. It uses the shape functor

∫
, much beloved

by higher differential geometers [BBP22], [Bun22], [Sch13], [Clo23], [Car15], in a crucial way,
reducing the∞-stack cohomology of TK to the singular cohomology of the classifying space BK .
This demonstrates the advantage of using∞-stack cohomology to study diffeological spaces.

The second case, which makes up the bulk of the paper, is to use ∞-stack cohomology, and
more generally the framework of higher topos theory, to study the diffeological Čech-de Rham
obstruction. First we obtain a homotopy pullback diagram of∞-stacks.

Theorem 7.1. For every k ≥ 1, there exists a commutative diagram of∞-stacks of the following
form

(2)

∗ BkRδ ∗ ∗

∗ Bk∇R Ωk+1
cl Ωk+1

BkR BkΩ1
cl Ω1≤•≤k+1

∗ Bk+1
R
δ Bk+1

∇ R

furthermore every commutative square in this diagram is a homotopy pullback square in the
Čech model structure on simplicial presheaves over Cart.

Such diagrams are often used in higher category-theoretic treatments of differential coho-
mology, see [Sch13], [ADH21], [Jaz21]. One can think of an ∞-stack as a classifying object for
a mathematical structure, such as diffeological principal G-bundles, as in [Min22]. Thus the
above diagrams can be thought of as tight relationships between the corresponding mathemat-
ical structures.

Of particular interest is the ∞-stack Bk∇R. This is the ∞-stack which classifies diffeological
R-bundle (k − 1)-gerbes with connection. Cohomology with values in this ∞-stack is called
the kth pure differential cohomology in [Jaz21]. From Theorem 7.1 we are immediately able to
obtain the following result.

Corollary 7.2. For every diffeological space X, there is an exact sequence of vector spaces

(3) 0→ Ȟk
∞(X,Rδ)→ Ȟk

∞,∇(X,R)→Ωk+1
cl (X)→ Ȟk+1

∞ (X,Rδ).

Near the completion of this paper, we learned that an analogous exact sequence was also
obtained in [Jaz21, Page 27] using completely different methods in the framework of homotopy
type theory. The above exact sequence allows us to compute the pure differential cohomology
of the irrational torus.

Theorem 7.3. Let Tα denote the irrational torus, then

(4) Ȟk
∞,∇(Tα ,R) �


R

2, k = 1,
R, k = 2,
0, k > 2.
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While Corollary 7.2 is useful for computations with the irrational torus, it is desirable to have
an exact sequence including de Rham cohomology rather than closed forms. This is obtained
in the following result.

Theorem 7.5. Given a diffeological space X and k ≥ 1, the sequence of vector spaces

Ȟk
∞(X,Rδ)→ Ȟk

conn(X,R)→Hk+1
dR (X)→ Ȟk+1

∞ (X,Rδ)

is exact.

When k = 1, we obtain an additional piece to this exact sequence.

Theorem 7.7. Given a diffeological space X, the sequence of vector spaces

(5) 0→H1
dR(X)→ Ȟ1

∞(X,Rδ)→ Ȟ1
conn(X,R)→H2

dR(X)→ Ȟ2
∞(X,Rδ)

is exact.

The above exact sequence is exactly analogous to the exact sequence obtained by Iglesias-
Zemmour in [Igl23].

In Appendix A we turn to the study of connections for diffeological principal bundles. This
theory is still in its infancy, and there are a few references that give varying definitions of
diffeological connections [Igl13, Section 8.32], [Wal12, Section 3], [MW17, Section 4]. The
theory of∞-stacks provides another definition. Let G be a Lie group, and U a cartesian space.
Then let Ω1(U,g)//G denote the groupoid whose objects are differential 1-forms ω ∈Ω1(U,g),
where g denotes the Lie algebra of G, and where there is a morphism g : ω→ ω′ if there exists
a smooth map g :U → G such that

ω′ = Ad−1
g (ω) + g∗mc(G)

where mc(G) denotes the Maurer-Cartan form of G. Taking the nerve of this groupoid, and
letting U vary defines an ∞-stack Ω1(−,g)//G, which amongst others has been studied in
[FSS+12], [FH13]. We connect this notion of connection to that given in [Wal12, Definition
3.2.1] in the following result.

Theorem A.3. Given a diffeological space X and a Lie group G, the functor

(6) Cons∇ : Coc∇(X,G)→WalG(X),

is an equivalence of groupoids, where Coc∇(X,G) is the groupoid whose objects are mapsQX→
Ω1(−,g)//G, where QX is a cofibrant replacement of X in the projective model structure on
simplicial presheaves, and WalG(X) is the groupoid of diffeological principal G-bundles with
connection as defined in [Wal12, Definition 3.2.1].

To compute∞-stack cohomology, one needs a workable model of the derived mapping space
RHom(X,A), when X is a diffeological space and A is a presheaf of chain complexes. In Ap-
pendix B, we obtain such a model, which reduces many computations with ∞-stacks to ma-
nipulations with double complexes. As a corollary, we obtain a simple and direct proof of the
following well known folklore result.

Proposition B.4. Let C be a cosimplicial chain complex, then

(7) holimn∈∆C
n ≃ totC,

where we are computing the homotopy limit in the category of chain complexes equipped with
the projective model structure, and totC denotes the total complex of C.

The paper is organized as follows. In Section 2, we introduce diffeological spaces and place
them in the context of sheaf theory. In Section 3, we introduce simplicial presheaves, show
how diffeological spaces embed into simplicial presheaves, and introduce the shape functor.
In Section 4, we prove that the ∞-stack cohomology of the irrational torus TK is isomorphic
to the group cohomology of K with values in R. In Section 5, we introduce the Dold-Kan cor-
respondence, which is a core tool we use for the rest of the paper. In Section 6, we introduce
the main ∞-stacks that will be used in the paper, and compute various examples of ∞-stack
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cohomology. In Section 7, we prove the main results of this paper, Theorem 7.5 and Theorem
7.7. In Appendix A, we prove that our notion of diffeological principal G-bundles with con-
nection using ∞-stacks agrees with Waldorf’s [Wal12]. In Appendix B, we prove a technical
result allowing us to easily compute∞-stack cohomology when the coefficient∞-stack comes
from a presheaf of chain complexes. In Appendix C we prove Theorem 7.1.

2. Smooth Sheaves and Diffeological Spaces

In this section we briefly describe diffeological spaces and their connection to sheaves on
Cart. See [Min22, Section 2] for more details.

Definition 2.1. LetM be a finite dimensional smooth manifold3. We say a collection of subsets
U = {Ui ⊆M}i∈I is an open cover if each Ui is an open subset of M, and

⋃
i∈IUi = M. If U is a

finite dimensional smooth manifold diffeomorphic to R
n for some n ∈N, we call U a cartesian

space. We call U = {Ui ⊆M} a cartesian open cover of a manifold M if it is an open cover of M
and every Ui is a cartesian space. We say that U is a good open cover if it is a cartesian open
cover, and further every finite non-empty intersectionUi0...ik =Ui0∩· · ·∩Uik is a cartesian space.

Let Man denote the category whose objects are finite dimensional smooth manifolds and
whose morphisms are smooth maps. Let Cart denote the full subcategory whose objects are
cartesian spaces. Given a set X, let Param(X) denote the set of parametrizations of X, namely
the collection of set functions p :U → X, where U ∈ Cart.

Definition 2.2. A diffeology on a setX, consists of a collection D of parametrizations p :U → X
satisfying the following three axioms:

(1) D contains all points R0→ X,
(2) If p : U → X belongs to D, and f : V → U is a smooth map, then pf : V → X belongs to

D, and
(3) If {Ui ⊆U }i∈I is a good open cover of a cartesian spaceU , and p :U → X is a parametriza-

tion such that p|Ui :Ui → X belongs to D for every i ∈ I , then p ∈D.
A set X equipped with a diffeology D is called a diffeological space. Parametrizations that
belong to a diffeology are called plots. We say a set function f : X → Y between diffeological
spaces is smooth if for every plot p :U → X in DX , the composition pf :U → Y belongs to DY .
We often denote the set of smooth maps from X to Y by C∞(X,Y ). Let Diff denote the category
of diffeological spaces.

Every manifold M is canonically a diffeological space by considering the set of parametriza-
tions p : U →M that are smooth in the classical sense. This gives a diffeology on M, called the
manifold diffeology. One can show [Igl13, Chapter 4] that the manifold diffeology defines a
fully faithful functor Man ↪→ Diff.

Diffeology extends many constructions and concepts from classical differential geometry to
diffeological spaces, such as the theory of bundles.

Definition 2.3. We say that a map π : X → Y of diffeological spaces is a subduction if it is
surjective, and for every plot p : U → Y , there exists a good open cover {Ui ⊆ U }, and plots
pi :Ui → X making the following diagram commute

(8)
Ui X

U Y

π

pi

p

Definition 2.4. A diffeological group is a group G equipped with a diffeology such that the
multiplication mapm : G×G→ G, and inverse map i : G→ G are smooth. A right diffeological
group action of a diffeological groupG on a diffeological spaceX is a smooth map ρ : X×G→ X
such that ρ(x,eG) = x, and ρ(ρ(x,g),h) = ρ(x,gh), where eG denotes the identity element of G.

3We will assume throughout this paper that manifolds are Hausdorff and paracompact.
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Definition 2.5. Let G be a diffeological group, and P be a diffeological right G-space. A map
π : P → X of diffeological spaces is a diffeological principal G-bundle if:

(1) the map π : P → X is a subduction, and
(2) the map act : P ×G→ P ×X P defined by (p,g) 7→ (p,p · g), which we call the action map

is a diffeomorphism.

A map of diffeological principal G-bundles P → P ′ over X is a diagram

P P ′

X
π′π

f

where f is a G-equivariant smooth map. A diffeological principal G-bundle P is said to be
trivial if there exists an isomorphism ϕ : X×G→ P , called a trivialization, where pr1 : X×G→
X is the product bundle. Let DiffPrinG(X) denote the category of diffeological principal G-
bundles over a diffeological space X.

In [Min22], we proved that diffeological principal bundles can be classified using cocycles
in a way reminiscent of classical differential geometry. However, rather than using cocycles
defined over an open cover, we use cocycles defined on plots. Let Plot(X) denote the category
whose objects are plots p : U → X of X and whose morphisms f : p → p′ are smooth maps
f :U →U ′ such that p′f = p.

Definition 2.6. Given a diffeological space X and a diffeological group G, call a collection
g = {gf0} of smooth maps gf0 : Up1

→ G indexed by maps of plots f0 : Up1
→ Up0

of X a G-
cocycle if for every pair of composable plot maps of X

Up2

f1−→Up1

f0−→Up0

it follows that

(9) gf0f1 = (gf0 ◦ f1) · gf1 .

We call (9) the diffeological G-cocycle condition.
Given two G-cocycles, g,g ′, we say a collection h = {hp0

} of smooth maps hp0
: Up0

→ G
indexed by plots of X is a morphism of G-cocycles h : g→ g ′ if for every map f0 :Up1

→Up0
of

plots of X, it follows that

(10) g ′f0 · hp1
= (hp0

◦ f0) · gf0 .

Given a diffeological space X and a G-cocycle g on X, we can construct a diffeological prin-
cipal G-bundle π : P → X, by taking the quotient

(11) P =

 ∐
p0∈Plot(X)

Up0
×G

 /∼
where ∼ is the smallest equivalence relation such that (xp1

, k1) ∼ (xp0
, k0) if there exists a map

f0 : Up1
→ Up0

of plots such that f0(xp1
) = xp0

and k0 = gf0(xp1
) · k1. We let π = Cons(g), short

for construction. In fact, this construction defines a functor from the category Coc(X,G) of
G-cocycles on X to the category of diffeological principal G-bundles.

Theorem 2.7 ([Min22, Theorem 3.15]). Given a diffeological space X and a diffeological group
G, the functor

(12) Cons : Coc(X,G)→ DiffPrinG(X)

is an equivalence of groupoids.

While extending the classical theory, there are constructions one can do with diffeological
spaces that are not available to smooth manifolds:
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(1) Given a diffeological space X, and a subset A
i
↪−→ X a subset. Then consider the set of

parametrizations p : U → A such that ip : U → X is a plot of X. This collection is a
diffeology, called the subspace diffeology on A,

(2) Given a diffeological space X and an equivalence relation ∼ on X, let π : X → X/∼
denote the resulting quotient function on sets. Consider the set of parametrizations
p : U → X/∼ such that there exists a good open cover {Ui ⊆ U } and plots pi : Ui → X
making the following diagram commute

Ui X

U X/∼

π

pi

p

This forms a diffeology on X/∼, called the quotient diffeology,
(3) Given a pair X and Y of diffeological spaces, the set of parametrizations p : U → X × Y

such that the composites π1 ◦ p and π2 ◦ p are plots of X and Y respectively, forms a
diffeology, called the product diffeology,

(4) Given diffeological spaces X and Y , the set of parametrizations p : U → C∞(X,Y ) such
that the transposed function p# : U ×X → Y is a smooth map is a diffeology, called the
functional diffeology.

These constructions make the category of diffeological spaces considerably better than the
category of finite dimensional smooth manifolds, as shown in Corollary 2.10.

Diffeological spaces inherit this nice structure from the category of smooth sheaves.

Definition 2.8. We briefly recall the relevant definitions for sheaf theory.

• A collection of families j on a category C consists of a set j(U ) for each U ∈ C, whose
elements {ri : Ui → U } ∈ j(U ) are families of morphisms over U . We call a collection of
families j on C a coverage if it satisfies the following property: for every {ri :Ui →U } ∈
j(U ), and every map g : V →U in C, then there exists a family {tj : Vj → V } ∈ j(V ) such
that gtj factors through some ri . Namely for every tj there exists some i and some map
sj : Vj →Ui making the following diagram commute:

(13)

Vj Ui

V U

tj

sj

ri

g

The families {ri :Ui →U } ∈ j(U ) are called covering families over U . If a map ri :Ui →
U belongs to a covering family r ∈ j(U ), then we say that ri is a covering map. If C is a
category, and j is a coverage on C, then we call the pair (C, j) a site.
• A presheaf on a category C is a functor F : Cop → Set. A morphism of presheaves is a

natural transformation. An element x ∈ F(U ) for an objectU ∈ C is called a section over
U . If f : U → V is a map in C, and x ∈ F(V ), then we sometimes denote F(f )(x) by x|U .
Let Pre(C) denote the category of presheaves on C.
• If {ri : Ui → U }i∈I is a covering family, then a matching family is a collection {xi}i∈I ,
xi ∈ F(Ui), such that given a diagram in C of the form

V Uj

Ui Uri

rjf

g

then F(f )(xi) = F(g)(xj ) for all i, j ∈ I . An amalgamation x for a matching family {xi} is
a section x ∈ F(U ) such that xi |U = x for all i.
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• Given a family of morphisms r = {ri : Ui → U } in a category C, we say that a presheaf
F : Cop → Set is a sheaf on r if every matching family {si} of F over r has a unique
amalgamation. If j is a coverage on a category C, we call F a sheaf on (C, j) if it is a sheaf
on every covering family of j. Let Sh(C) denote the full subcategory of Pre(C) whose
objects are sheaves on (C, j).

One can put a site structure on Cart using the coverage of good open covers, see [Min22,
Section 4]. We call sheaves on Cart smooth sheaves. There are many interesting examples of
smooth sheaves. Every cartesian space defines a representable sheaf yU . Every manifold M
defines a sheaf by U 7→ C∞(U,M). There are also Ωn and Ωn

cl for every n ≥ 0, the sheaves
of differential n-forms and closed differential n-forms respectively. The category Sh(Cart) of
smooth sheaves is “extremely nice”, being a Grothendieck topos [MM12].

A sheaf X on Cart is concrete if X(U ) is a subset of the set functions U → X(∗) where ∗ is the
terminal object in Cart. The representable sheaves yU and the sheaves induced by manifolds
M are concrete, but Ωn and Ωn

cl are not.
The full subcategory ConSh(C) ↪→ Sh(C) of concrete sheaves on a concrete site forms a qu-

asitopos, which while not being a Grothendieck topos, is still a very “nice” category [BH11,
Theorem 52].

Theorem 2.9 ([BH11, Prop 24]). Let Cart denote the site of cartesian spaces with the coverage
of good open covers. Then there is an equivalence of categories

(14) Diff ≃ ConSh(Cart),

where ConSh(Cart) denotes the category of concrete sheaves on Cart.

Corollary 2.10. The category Diff is a quasitopos. This implies that it is a complete, cocomplete
and cartesian closed category.

We refer to Theorem 2.9 as the Baez-Hoffnung Theorem4. It is the starting point of the
interaction of sheaf theory and diffeology. Many aspects of the study of diffeological spaces can
be restated using sheaf theory, for example a differential n-form ω on a diffeological space X as
defined in [Igl13, Article 6.28] is equivalently a morphism X→Ωn of sheaves.

In [Min22] we took advantage of the Baez-Hoffnung Theorem to embed the category of dif-
feological spaces into the category of simplicial presheaves on Cart. We will delve into this idea
in the next section. Once inside the category of simplicial presheaves, we can then take advan-
tage of many homotopical tools. This in effect provides a way of obtaining a very powerful and
expressive homotopy theory for diffeological spaces that subsumes the usual homotopy theory
for diffeological spaces as considered in [Igl13, Chapter 5].

3. Simplicial Presheaves

In this section we detail the model categorical notions we will need for the remainder of the
paper. We assume the reader is comfortable with model categories and simplicial homotopy
theory, and recommend the following standard sources [Hir09], [Hov07], [GJ12], [GS06] for
good references on the topics. See [Min22, Section 5] for more details.

Definition 3.1. Let sPre(Cart) denote the category whose objects are functors Cartop → sSet,
which we call simplicial presheaves, and whose morphisms are natural transformations.

Note that sPre(Cart) is complete and cocomplete, with limits and colimits computed object-
wise. There are two pairs of adjoint triples that give structure to sPre(Cart).

4Strictly speaking, the Baez-Hoffnung theorem gives an equivalence between the category of what we call clas-
sical diffeological spaces and the category of concrete sheaves on the site of open subsets of cartesian spaces with
open covers, see [Min22, Appendix A] for a proof that this is an equivalent formulation.
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(15) sPre(Cart) sSet(−)c

colimCartop

limCartop

⊣
⊣

, sPre(Cart) Pre(Cart)c(−)

π0

(−)0

⊣
⊣

where (−)c is the functor induced by restricting along the unique functor Cart→ ∗ and c(−) is
the functor that sends a presheaf to the corresponding simplicial presheaf where all the sim-
plicial face and degeneracy maps are the identity. We often don’t use the notation c(−) explic-
itly, especially for representable presheaves, as it should be clear from context. The functors
π0 and (−)0 are defined objectwise. For every U ∈ Cart, and simplicial presheaf X on Cart,
π0X(U ) = π0(X(U )), the set of connected components of X(U ), and (X)0(U ) = X(U )0, the set of
vertices of X(U ).

Remark 3.2. The above adjoint triples exist for any essentially small category C in place of
Cart.

The category sPre(Cart) is tensored, cotensored and enriched over sSet. Indeed, if K is a
simplicial set and X is a simplicial presheaf, then

• X ⊗K is the simplicial presheaf defined objectwise by

(X ⊗K)(U ) = (X ×Kc)(U ) = X(U )×K.
• XK is the simplicial presheaf defined objectwise by

(XK )(U ) = X(U )K ,

where for simplicial sets K and L, KL denotes the simplicial function complex.
• for any two simplicial presheaves X and Y , let sPre(Cart)(X,Y ) denote the simplicial

set defined levelwise by

sPre(Cart)(X,Y )n = sPre(Cart)(X ⊗∆n,Y ).

This structure is compatible in the sense of the following natural isomorphisms of simplicial
sets

(16) sPre(Cart)(X ⊗K,Y ) � sPre(Cart)(X,Y K ).

The category sPre(Cart) inherits several model structures from sSet. We say a map f : X→ Y
is a projective weak equivalence if it is an objectwise weak equivalence of simplicial sets, a
projective fibration if it is an objectwise fibration, and a projective cofibration if it left lifts
against all maps that are both projective weak equivalences and projective fibrations.

Theorem 3.3 ([BK72, Page 314], [Lur09, Section A.2.6]). The projective weak equivalences,
fibrations and cofibrations define a proper, combinatorial, simplicial model category structure
on sPre(Cart), called the projective model structure on simplicial presheaves.

Let H denote the category of simplicial presheaves equipped with the projective model
structure. Note that [Dug01, Corollary 9.4] describes a sufficient condition on simplicial presheaves
to be projective cofibrant, and it implies that all representable presheaves, denoted yU for a
cartesian space U , are projective cofibrant.

Given a cartesian space U and a good cover U = {Ui ⊆ U } of U , we can form the simplicial
presheaf Č(U) defined levelwise by

Č(U)n =
∐
i0...in

y(Ui0 ∩ · · · ∩Uin).

We call Č(U) the Čech nerve of U. There is a canonical map π : Č(U)→ yU . Let Č denote the
class of morphisms π : Č(U)→ yU whereU ranges over the cartesian spaces and U ranges over
the good open covers for U .
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Theorem 3.4 ([DHI04, Theorem A.6]). The left Bousfield localization of H at Č exists. We call
the resulting model structure the Čech model structure on sPre(Cart), and denote it by Ȟ. It
is similarly a proper, combinatorial and simplicial model category.5

The fibrant objects in Ȟ are called ∞-stacks. They are those projective fibrant simplicial
presheaves X such that the canonical map

(17) sPre(Cart)(yU,X)→ sPre(Cart)(Č(U),X),

is a weak equivalence of simplicial sets, for every cartesian space U and good cover U of U .
Every sheaf and classical stack of groupoids on Cart, thought of as simplicial presheaves on
Cart, is an∞-stack. See [Min22, Section 4.1] for more details.

The identity functors define a Quillen adjunction between the projective and Čech model
structure on simplicial presheaves.

(18) H Ȟ

1sPre(Cart)

1sPre(Cart)

⊣
Crucially, the (easy to compute) finite homotopy limits in H are preserved as homotopy limits
in Ȟ, thanks to the following result.

Proposition 3.5 ([Rez10, Proposition 11.2]). The left Quillen functor 1sPre(Cart) : H→ Ȟ pre-
serves finite homotopy limits.

Given simplicial presheaves X and Y on Cart, let Q and R denote cofibrant and fibrant
replacement functors for Ȟ respectively, then let

(19) RȞ(X,Y ) = sPre(Cart)(QX,RY ).

We call RȞ(X,Y ) the derived mapping space of X and Y . If X is already cofibrant, then we
can take Q = 1sPre(Cart) and if Y is already fibrant, we can take R = 1sPre(Cart).

If X and A are simplicial presheaves, then let

Ȟ0
∞(X,A) = π0RȞ(X,A).

We call this the 0th∞-stack cohomology of X with values in A.
If A is a simplicial presheaf that is objectwise a simplicial group, then we let

Ȟ1
∞(X,A) = π0RȞ(X,WA),

where W is the delooping functor, see [Min22, Definition 4.29].

If A is a simplicial presheaf such that W
k
A, which we call its k-fold delooping, exists for

k ≥ 1, then we say that A is k-deloopable, and we let

Ȟk
∞(X,A) = π0RȞ(X,W

k
A).

We call this the kth∞-stack cohomology of X with coefficients in A. If the k-fold delooping of a

simplicial presheaf A exists and is an∞-stack, then we denote it by BkABW
k
A. The following

result is well known, see [Min22, Lemma 4.34] for a proof.

Lemma 3.6. If A is a presheaf of simplicial abelian groups, then A is k-deloopable for all k ≥ 1.

There is a convenient cofibrant replacement functor for Ȟ, given (in the notation of [Rie14,
Section 4.2]) for a simplicial presheaf X by the bar construction B(X,Cart, y), where y denotes
the Yoneda embedding y : Cart ↪→ sPre(Cart).

5It is important to note that the projective/objectwise weak equivalences between simplicial presheaves are still
weak equivalences in the Čech model structure. Furthermore, all Čech weak equivalences between ∞-stacks are
objectwise weak equivalences.
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If X is a diffeological space, then by the Baez-Hoffnung Theorem (Theorem 2.9), we can
consider it as a sheaf on Cart. Then cX is a simplicial presheaf6. If we apply Q to cX then this
formula reduces to the simplicial presheaf given levelwise by

(20) QXn =
∐

(fn−1,...,f0)∈N (Plot(X))n

yUpn ⊗∆
n.

See [Min22, Section 4.2] for more details.
Using the above cofibrant replacement functor for a diffeological space X, if A is a ∞-stack

that is also objectwise a simplicial abelian group, then we can obtain an explicit description of
its kth∞-stack cohomology with values in A, given by the kth cohomology of the cochain com-
plex obtained by taking the dual Dold-Kan correspondence functor applied to the cosimplicial
abelian group

(21) A(QX0) A(QX1) A(QX2) . . . ,

the case where A is an abelian diffeological group is given by [Min22, Corollary 4.38].

Example 3.7. Let G be a diffeological group, and consider the (strict) functor BG : Cartop →
Gpd that sends a cartesian space U to the groupoid7

(22) [C∞(U,G)⇒ ∗]
Postcomposing with the nerve functor gives us a simplicial presheaf NBG, which we will often
just denote by BG. By [Min22, Theorem 5.17], (referencing [SS21, Lemma 3.3.29] and [Pav22a,
Proposition 4.13]), BG is an∞-stack.

This∞-stack takes a central role in the theory of diffeological principalG-bundles. For every
cartesian space U , there is a canonical map of groupoids

(23) BG(U )→ DiffPrinG(U ),

that sends the point to the trivial diffeological principal G-bundle, and sends a map to G to the
corresponding automorphism of the trivial bundle. This map is an equivalence of groupoids.

Furthermore, if X is a diffeological space and QX is its cofibrant replacement, then G-
cocycles on X are equivalent to maps of ∞-stacks QX → BG in the sense of [Min22, Lemma
6.7]. In other words, for every diffeological space X, there is a weak equivalence

(24) RȞ(X,BG) ≃NDiffPrinG(X).

Thus we say that BG classifies diffeological principal G-bundles. This implies that

(25) Ȟ1
∞(X,G) � π0DiffPrinG(X),

whereπ0DiffPrinG(X) denotes the set of isomorphism classes of diffeological principalG-bundles
on X.

Let us now examine the left hand side of (15). If K is a simplicial set, then Kc is the constant
simplicial presheaf on K , namely Kc(U ) = K for all U ∈ Cart. The functors making up (15) are
important enough to warrant renaming. Notice that since R

0 = ∗ is the terminal object in Cart,
it is the initial object in Cartop, thus limU∈Cartop X(U ) � X(∗). For K ∈ sSet and X ∈ sPre(Cart),
we set

(26) Disc(K) = Kc, Γ (X) = lim
U∈Cartop

X(U ) � X(∗), Π∞(X) = colim
U∈Cartop

X(U ).

It turns out that Γ has a further right adjoint, CoDisc : sSet→ sPre(Cart) defined objectwise by

CoDisc(K)(U ) = KΓ (yU ).

We say that Disc(K) is the discrete simplicial presheaf on K , Γ (X) is the global sections of X,
Π∞(X) is the fundamental ∞-groupoid or shape of X, and that CoDisc(K) is the codiscrete

6We will often not use the notation cX for diffeological spaces in what follows, as it should be apparent from
context what category we are considering X in.

7Here we use the convention discussed in [Min22, Example 5.13] for BG.
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simplicial presheaf on K . In fact, all of these adjunctions are simplicially enriched adjunc-
tions.

Thus we obtain the following triple of simplicially enriched adjunctions

(27) sPre(Cart) sSet

Π∞

CoDisc

Disc

Γ⊣
⊣

⊣

Proposition 3.8 ([Sch13, Prop 4.1.30 and 4.1.32]). Each adjunction in (27) is a simplicial Quillen
adjunction, where sPre(Cart) is given the Čech model structure Ȟ, and sSet is given the Kan-
Quillen model structure.

In [Sch13], Schreiber defines the three following endofunctors on the category of simplicial
presheaves on Cart:

(28)

∫
= Disc ◦Π∞
♭ = Disc ◦ Γ
♯ = CoDisc ◦ Γ

called shape, flat and sharp respectively.

Remark 3.9. Using the name shape functor for both Π∞ and
∫

is justified by remembering that
Disc : sSet→ Ȟ is fully faithful.

They give another pair of simplicial Quillen adjunctions

(29) Ȟ Ȟ

∫

♯

♭

⊣
⊣

Let us focus further on the shape functor Π∞. Let ∆ka denote the cartesian space defined by

(30) ∆ka =

(x0, . . . ,xk) ∈Rk+1 :
k∑
i=0

xi = 1

 .
We call these affine simplices.

Let Sing∞ : sPre(Cart)→ sSet be the functor defined objectwise by

(31) Sing∞(X) = hocolim∆op

(
X(∆0

a) X(∆1
a) X(∆2

a) . . .
)
,

where if we wish to be concrete, we can use the model of the homotopy colimit given by taking
the diagonal of the above bisimplicial set. We call this the smooth singular complex functor.

Lemma 3.10. The functor Sing∞ sends objectwise weak equivalences of simplicial presheaves
to weak equivalences.

Proof. This follows from [GJ12, Proposition 1.9] and taking the diagonal to model the homo-
topy colimit. □

Proposition 3.11. There are natural weak equivalences between the functors

(32) Sing∞ ≃ Sing∞ ◦Q ≃Π∞ ◦Q

where Q denotes a cofibrant replacement functor for Ȟ.
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Proof. We mirror the proof given in [Bun22, Remark 4.12], and since the left hand weak equiv-
alence is shown there, we only prove the middle weak equivalence. If we restrict the smooth
singular complex functor along the Yoneda embedding Cart ↪→ sPre(Cart), then we obtain a
functor Sing∞ : Cart→ sSet, and there is a natural weak equivalence of functors Sing∞

∼−→ ∗,
where ∗ : Cart → sSet is the constant functor on a point ∗ = ∆0, this follows from [Bun22,
Proposition 3.11]. Since all simplicial sets are cofibrant in the Quillen model structure on
sSet, [Rie14, Corollary 5.2.5] implies that this induces a natural weak equivalence

(33) B(X,Cart,Sing∞)
∼−→ B(X,Cart,∗)

of simplicial presheaves for every X ∈ sPre(Cart). But B(X,Cart,∗) � colimCartopB(X,Cart, y) �
colimCartopQX � Π∞QX. This follows from the fact that B(X,Cart, y) � QX, which is just
repackaging the definition of QX. Since Sing∞ is a left adjoint, we have

B(X,Cart,Sing∞) � Sing∞B(X,Cart, y) � Sing∞QX.

This gives the second natural weak equivalence above. □

By Proposition 3.11, we will often refer to Sing∞(X) as the shape of X as well. The shape
functor has many wonderful properties. While we will not need all of the following results on
the shape functor for this paper, we provide a concise listing of them here as such results are
scattered throughout the literature.

Remark 3.12. Since
∫

is just applying the shape functor and then treating the resulting sim-
plicial set as a constant simplicial presheaf, along with the fact that

∫
≃ Disc ◦ Sing∞, we will

blur the distinction between Π∞,Sing∞ and
∫

. We will use
∫

when we wish to be ambiguous
about which particular model of the shape functor we wish to use.

Theorem 3.13 ([Bun21b, Theorem 4.15]). Let M be a finite dimensional smooth manifold,
thought of as a simplicial presheaf on Cart, then

(34)
∫
M ≃ Sing(Mtop)

where Mtop is the underlying topological space of M and Sing : Top → sSet is the classical
singular complex. In other words, the shape of M is its underlying homotopy type.

Remark 3.14. It should be noted that Theorem 3.13 is really a consequence of a classical result
known as the nerve theorem [Bor48].

Proposition 3.15 ([Pav22b, Example 14.1]). Let Ωn
cl denote the sheaf on Cart of closed differ-

ential n-forms. Its shape is

(35)
∫

Ωn
cl ≃ BnRδ.

Lemma 3.16. Let K be a simplicial set, then the counit

(36) εK : (Π∞ ◦Disc)(K)→ K.

is an isomorphism. In other words, for discrete simplicial presheaves Kc, we have∫
Kc � K.

Proof. This follows from the fact that Disc is fully faithful, and the unit of an adjunction where
the right adjoint is fully faithful is an isomorphism. □

Proposition 3.17 ([Car15, Theorem 3.4]). Let M denote a simplicial manifold. Let M denote
the simplicial presheaf on Cart defined degreewise by

M(U )k = C∞(U,Mk).
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Then the shape of M is

(37)
∫
M ≃ ||M ||

where ||M || denotes the homotopy type of the “fat” geometric realization of M, see [Car15,
Section 3.2].

Remark 3.18. The above result is especially interesting when M is the nerve of a Lie groupoid,
as this says that the shape of a Lie groupoid (thought of as a simplicial presheaf) is weak equiv-
alent to the homotopy type of the Lie groupoid’s classifying space [Car15, Section 2.2].

Remark 3.19. We should also mention that the shape functor has been used to great effect in
what is now called the Smooth Oka Principle. See the following references [BBP22], [SS21],
[Clo23], [Pav22a, Section 10].

Let SingD : Diff→ sSet be the functor defined levelwise by

(38) SingD(X)n = Diff(∆na ,X).

We call this the diffeological singular complex. Note that by using the diagonal as a model for
the homotopy colimit, for a diffeological space X (actually any sheaf of sets on Cart), we have

(39) SingD(X) � Sing∞(X).

Proposition 3.20. Let X be a diffeological space, then

(40) Π∞(QX) ≃ SingD(X) ≃NPlot(X)

where NPlot(X) is the nerve of the category of plots of X.

Proof. We will only prove the second weak equivalence, as the first holds by the previous dis-
cussion. It is shown in [Bun22, Proposition 3.6] that Sing∞ has a left and right adjoint (though
only the right adjoint forms a Quillen adjunction), therefore we have

(41)

Π∞(QX) = Π∞


∫ n∈∆ ∐

NPlot(X)n

yUpn ⊗∆
n


�

∫ n∈∆ ∐
NPlot(X)n

Π∞(yUpn)× (Π∞ ◦Disc)(∆n)

≃
∫ n∈∆ ∐

NPlot(X)n

∗ ×∆n

�NPlot(X).

where the weak equivalence is given by Theorem 3.13 and Lemma 3.16. □

4. The Irrational Torus

In this section, we will show that if K ⊂ R is a diffeologically discrete subgroup of the real
numbers, then the infinity stack cohomology of the irrational torus TK = R

n/K (for any n ≥ 1)
with values in R

δ, is isomorphic to the group cohomology of K with values in R
δ. This was

first proved by Iglesias-Zemmour [Igl23, Page 15] with his own version of diffeological Čech
cohomology, which we will refer to as PIZ cohomology. In [Min22] we found maps between
∞-stack cohomology and PIZ cohomology, and showed that one of these maps is a retract, but
it is still an open question as to whether these two cohomologies are isomorphic.

The motivation for this section is two-fold. One is to support the conjecture that ∞-stack
cohomology is isomorphic to PIZ cohomology. We do this by showing that they agree on one
of the most important class of examples of diffeological spaces, the irrational tori. The second
motivation is to show the power of ∞-topos theory and in particular ∞-stack cohomology
through the use of the shape operation. The proof of Theorem 4.4 is completely different than
that in [Igl23], and it is conceptually more straightforward.
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Definition 4.1. Suppose that K ⊂ R
n is a subgroup, and furthermore, when K is given the

subset diffeology of R, it coincides with the discrete diffeology, so that every plot is constant.
We call its quotient TK = R

n/K the n-dimensional K-irrational torus8.

We define the quotient map π : Rn→ TK of diffeological spaces. This map is a diffeological
principal K-bundle [Igl13, Article 8.15], where K is given the discrete diffeology. By the dis-
cussion in Example 3.7, the bundle π is classified by a map of ∞-stacks gK : TK → NDiffPrinK .
Furthermore, by [Min22, Corollary 6.12], we obtain the following cube, where the front face
and back face are homotopy pullback squares and the maps going from the back face to the
front face are all objectwise weak equivalences

(42)

R̃
n EK

R
n ∗

QTK BK

TK NDiffPrinK

π

gK

Now if we apply the shape functor to this cube, the back face remains a homotopy pullback
by the following result.

Proposition 4.2 ([SS21, Proposition 3.3.8]). Let K be a simplicial set, and let f : X → Disc(K)
and g : Y → Disc(K) be maps of simplicial presheaves on Cart. Then there is a Čech weak
equivalence

(43) (∫ X)×hDisc(K) (∫ Y ) ≃ ∫
(
X ×hDisc(K) Y

)
between the homotopy pullbacks of the maps

∫
f and

∫
g and the shape of the homotopy pull-

back of the maps f and g.

Remark 4.3. For a model-category theoretic proof of Proposition 4.2, use the argument of
[Sch13, Theorem 4.1.34], and mirror the argument of [Sch13, Proposition 4.1.35] model cate-
gorically.

Therefore the front face must also be a homotopy pullback square. Now by Lemma 3.10,
Lemma 3.16, and Theorem 3.13 it follows that

(44) ∫ R̃n ≃ ∫ Rn ≃ ∗, ∫ QTK ≃ ∫ TK , ∫ EK ≃ ∫ ∗ � ∗, BK � ∫ BK ≃ ∫ DiffPrinK .
From this we obtain the main result of this section.

Theorem 4.4. There is an isomorphism

(45) Ȟn
∞(TK ,R

δ) �Hn
grp(K,Rδ)

of abelian groups, for every n ≥ 0, where R
δ denotes the discrete group of real numbers, and

where Hn
grp(K,Rδ) denotes the group cohomology of K with coefficients in R

δ.

Proof. First we note that since R
δ is discrete, Rδ � ♭Rδ. Similarly, BnRδ � ♭BnRδ for all n ≥ 0.

Thus

(46) RȞ(TK ,B
n
R
δ) �RȞ(TK , ♭B

n
R
δ) �RȞ(∫ TK ,BnRδ).

Now from Proposition 3.11, there is a weak equivalence SingD(TK )→
∫
TK of simplicial sets,

and by [CW14, Proposition 4.30], SingD(TK ) is a Kan complex. Now
∫
NDiffPrinK is a Kan

8The word irrational comes from the example where n = 1, and K = Z+αZ with α an irrational number. This is
the most studied example of an irrational torus in diffeology. Interestingly, Z+αZ ⊂ R with the subset topology is
dense in R, hence not discrete, however the subset diffeology is discrete.
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complex since it is a simplicial abelian group. Furthermore since TK is diffeologically connected
[Igl23, Section II], SingD(TK ) is connected. Thus the composite map SingD(TK )→

∫
NDiffPrinK

is a map of connected Kan complexes whose homotopy fiber is contractible. Therefore by the
long exact sequence of homotopy groups [Cis19, Theorem 3.8.12], it is a weak equivalence,
which implies that

∫
gK is a weak equivalence. Therefore we have

(47) RȞ(∫ TK ,BnRδ) ≃RȞ(∫ NDiffPrinK ,BnRδ) ≃RȞ(BK,BnRδ).

Which implies that

(48) Ȟn
∞(TK ,R

δ) = π0RȞ(∫ TK ,BnRδ) � π0RȞ(BK,BnRδ) = Ȟn
∞(BK,Rδ).

However since BK and BnRδ are discrete, Disc is fully faithful and BnRδ is a Kan complex, we
have

RȞ(BK,BnRδ) ≃ sSet(BK,BnRδ),

where sSet(BK,BnRδ) is the usual simplicial set function complex. It is then well known (see
[Wei95, Example 8.2.3] for instance) that

(49) π0sSet(BK,B
n
R
δ) �Hn

grp(K,Rδ).

This proves the theorem. □

5. The Dold-Kan Correspondence

In this section, we discuss the Dold-Kan correspondence, which is central to Section 7.

Remark 5.1. For the remainder of this paper, by a vector space, we mean a real vector space,
not necessarily of finite dimension. By a chain complex we mean a non-negatively graded chain
complex of vector spaces. Let Ch denote the category of chain complexes.

Definition 5.2. Let Vect denote the category whose objects are vector spaces and whose mor-
phisms are linear maps. Let sVectB Vect∆

op
denote the category of simplicial vector spaces.

Proposition 5.3 ([GS06, Proposition 4.2 and Theorem 4.13], [Jar03, Section 1]). The category
sVect admits a proper, combinatorial, simplicial model category structure where a morphism
f : X→ Y is a

(1) weak equivalence if it is a weak homotopy equivalence of the underlying simplicial sets,
(2) fibration if it is a Kan fibration of the underlying simplicial sets,
(3) cofibration if it is degreewise a monomorphsim.

We call this the Kan-Quillen model structure9 on sVect.

Proposition 5.4 ([GS06, Theorem 1.5], [Jar03, Section 1]). The category Ch admits a proper,
combinatorial, simplicial model category structure where a morphism f : C→D is a

(1) weak equivalence if it is a quasi-isomorphism of chain complexes, and
(2) fibration if fk : Ck→Dk is surjective in degrees k ≥ 1.
(3) cofibration if it is degreewise a monomorphism10.

We call this the projective model structure11 on chain complexes.

There is an adjoint pair of functors,

(50) Ch sVect

DK

N

⊣

9Note that every object in sVect is fibrant and cofibrant.
10For the projective model structure on chain complexes of R-modules for a general commutative ring R, we

require these to be degreewise monomorphisms with projective cokernel. Since all vector spaces are projective as
R-modules, this condition is always satisfied.

11Note that every object in Ch is fibrant and cofibrant.
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which by the Dold-Kan correspondence [GS06, Theorem 4.1] form an adjoint equivalence12.

Lemma 5.5 ([SS03, Section 4.1]). The adjunctionN ⊣ DK is a Quillen adjunction ([Hir09, Defini-
tion 8.5.2]) between the model category structures on Ch and sVect. Furthermore, the functors
form a Quillen equivalence ([Hir09, Definition 8.5.20]). In fact, sinceN and DK form an adjoint
equivalence, it follows that DK ⊣ N is also an adjoint equivalence. Furthermore N and DK are
both left and right Quillen functors.

If we consider the category of simplicial sets sSet with its usual Kan-Quillen model structure
[GS06, Theorem 1.22], there is a simplicial Quillen adjunction

(51) sSet sVect

R[−]

U

⊣

where U denotes the forgetful functor, and R[−] denotes the functor that sends a simplicial set
X to the free simplicial vector space RX, defined degreewise by RXn = R(Xn), where R(Xn) is
the free vector space on the set Xn. Thus we obtain a Quillen adjunction

(52) sSet Ch

NR[−]

UDK

⊣

which is furthermore a simplicial Quillen adjunction13.
Note that the Dold-Kan correspondence also provides a simplicial enrichment of Ch. Indeed,

suppose C and D are chain complexes, then let Ch(C,D) denote the simplicial vector space
defined degreewise by

(53) Ch(C,D)k = Ch(NR∆k ⊗C,D).

This makes the Dold-Kan correspondence an enriched adjoint equivalence. This is also the
simplicial enrichment mentioned in Proposition 5.4.

This also supplies Ch with tensoring and cotensoring over sSet. Namely if K is a sim-
plicial set and C is a chain complex then C ⊗ K is the chain complex C ⊗ NRK , and CK =
NRCh(NRK,C).

Now the category of chain complexes Ch is also enriched over itself. Indeed, if C and D are
chain complexes, then let MapCh(C,D) denote the chain complex defined as follows. First let

us define the unbounded chain complex MapCh
Z(C,D) defined in degree k ∈Z by

(54) MapCh
Z(C,D)k =

∏
i≥0

Vect(Ci ,Di+k),

with d : MapCh
Z(C,D)k→MapCh

Z(C,D)k−1 defined for a map f by

df = dDf − (−1)kf dC .

We call an element of degree k in MapCh
Z(C,D) a degree k map from C to D.

Definition 5.6. IfC is an unbounded (Z-graded) chain complex, then let τ≥0C denote the chain
complex defined degreewise by (τ≥0C)k = Ck for k > 0, and (τ≥0C)0 = Z0C, the set of 0-cycles
of C, i.e. those x ∈ C0 such that dx = 0, the differential on τ≥0C is induced by the differential
on C. We call τ≥0C the smart truncation of C.

Now given chain complexes C and D, let

(55) MapCh(C,D) = τ≥0MapCh
Z(C,D),

12This result actually holds for chain complexes and simplicial objects taking values in any idempotent com-
plete, additive category, see [Lur17, Theorem 1.2.3.7].

13We will often omit the functor U in our notation.
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denote the smart truncation applied to MapCh
Z(C,D). This means that MapCh(C,D)k = MapCh

Z(C,D)
for k > 0, and MapCh(C,D)0 � Ch(C,D). We refer to MapCh(C,D) as the mapping chain com-
plex between C and D.

Lemma 5.7 ([Opa21, Example 4.3.2]). Let C and D be chain complexes, then we have an iso-
morphism of simplicial vector spaces

(56) DKMapCh(C,D) � Ch(C,D).

Further, this provides an isomorphism

(57) MapCh(C,D) �NCh(C,D).

An explicit description for the path space of a chain complex C, equivalently the cotensoring
C∆1

, is given in Appendix C.

Definition 5.8. Let C be a small category. Then let ChPre(C) denote the category whose ob-
jects are functors Cop → Ch, and whose morphisms are natural transformations. We call such
functors presheaves of chain complexes.

Proposition 5.9 ([Hir09, Section 11.6]). The category ChPre(C) admits a proper, combinatorial,
simplicial model category structure where a morphism f : C→D is a

(1) weak equivalence if it objectwise a weak equivalence in the projective model structure
on chain complexes, and

(2) fibration if it is objectwise a fibration in the projective model structure on chain com-
plexes.

We refer to this as the (global) projective model structure on presheaves of chain complexes.

Thus we obtain a similar simplicial Quillen pair

(58) sPre(C) ChPre(C)

NR[−]

UDK

⊣

where sPre(C) is equipped with the projective model structure. In Appendix C, we will use
(58), along with Proposition 3.5, to compute homotopy pullbacks in Ȟ.

6. Examples of∞-stacks

In this section we detail the∞-stacks involved in this paper, and examine the∞-stack coho-
mology of a diffeological space with coefficients in some of these example∞-stacks.

Example 6.1. Given a finite dimensional smooth manifold M, the functor U 7→ C∞(U,M) de-
fines a sheaf on Cart, and therefore an ∞-stack. The same goes for diffeological spaces. Given
a diffeological space X, let Xδ denote the diffeological space with the same underlying set, but
equipped with the discrete diffeology. As sheaves we have Xδ �Disc(X(∗)) = ♭X.

Example 6.2. The presheaf of differential k-forms Ωk and the presheaf of closed differential
k-forms Ωk

cl are sheaves of vector spaces on Cart for every k ≥ 0. Thus they are ∞-stacks. The
de Rham differential defines a map of∞-stacks d : Ωk→Ωk+1 for all k ≥ 0.

There is a canonical map

(59) mc(R) : R→Ω1

of ∞-stacks, defined by the Yoneda Lemma as follows. Notice that R ∈ Cart, so by the Yoneda
lemma, a map ω : yR → Ω1 is equivalent to an element ω ∈ Ω1(R). There is a canonical
element of the set of 1-forms on R, called the Maurer-Cartan form of R. For a general Lie
group G, we let mc(G) denote its Maurer-Cartan form. If we label the coordinate of R by t,
then the Maurer-Cartan form is simply given by mc(R) = dt. Thus for a cartesian space U , the
function mc(R)(U ) : R(U )→Ω1(U ) acts by taking a smooth map f : U → R and pulling back
the Maurer-Cartan form f ∗mc(R) ∈ Ω1(U ). Note that this is the same thing as df . In other
words as maps of∞-stacks, we have mc(R) = d.
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Example 6.3. Let G be a diffeological group. As discussed in Example 3.7 the presheaf of
groupoids BG given by

U 7→ [C∞(U,G)⇒ ∗]
is a stack, and is objectwise weak equivalent to the stack of diffeological principal G-bundles.
We abuse notation as in [Min22, Example 5.13] and also let BG denote the corresponding
simplicial presheaf, which is an ∞-stack. Given a diffeological space X, a G-cocycle on X as
in Definition 2.6 is precisely a map QX → BG of simplicial presheaves. Theorem 2.7 shows
that the resulting groupoid of G-cocycles on X is equivalent to the groupoid of diffeological
principal G-bundles on X. Thus Ȟ1

∞(X,G) B Ȟ0
∞(X,BG) is the set of isomorphism classes of

G-cocycles, which is isomorphic to the set of isomorphism classes of diffeological principal
G-bundles.

Example 6.4. If G is a Lie group with Lie algebra g, then let Ω1(−,g)//G denote the presheaf of
groupoids

U 7→ [Ω1(U,g)×C∞(U,G)
t
⇒
s
Ω1(U,g)]

where t(ω,g) = ω and s(ω,g) = Ad−1
g (ω)+g∗mc(G). The nerve of this presheaf of groupoids is an

∞-stack [FSS+12, Proposition 3.2.5]14. This is the ∞-stack that classifies principal G-bundles
with connection. We will often abuse notation and write Ω1(−,g)//G to refer to the presheaf of
groupoids and the simplicial presheaf obtained by taking the nerve construction. Note that a
map QX → Ω1(−,g)//G is equivalent to the data of a G-cocycle gf0 : Up1

→ G and a collection
{Ap0
}p0∈Plot(X) of 1-forms Ap0

∈ Ω1(Up0
,g) such that for every map f0 : Up1

→ Up0
of plots we

have

(60) Ap1
= Ad−1

gf0
(f ∗0Ap0

) + g∗f0mc(G).

Let us call this collection of data (g,A) = ({gf0}, {Ap0
}) a G-cocycle with connection. We show

that this definition of connection is equivalent to the one given in [Wal12, Definition 3.2.1] in
Appendix A.

Remark 6.5. The following examples of simplicial presheaves can be checked to be ∞-stacks
by using [Pav22a, Corollary 6.2]. One simply needs to notice that the examples that follow are
presheaves of bounded chain complexes, and can thus be thought of equivalently as presheaves
of cochain complexes, and that the homotopy descent condition for presheaves of cochain com-
plexes is equivalent to the condition of Dold-Kan applied to the presheaves of chain complexes
to be∞-stacks.

Example 6.6. Given a sheaf A of abelian groups on Cart, with k ≥ 1, the simplicial presheaf
BkA is obtained by taking Dold-Kan of the presheaf of chain complexes [A → 0 → ·· · → 0].
When A is an abelian diffeological group, then BA is the ∞-stack that classifies diffeological
principal A-bundles, as shown in [Min22].

In this paper we will consider the example BkR. Given a diffeological space X, a map QX→
BkR consists of a g ∈R(QXk) such that δg = 0, see Appendix B. We call these R-bundle (k −1)-
gerbes. Thus a diffeological principal R-bundle is precisely a R-bundle 0-gerbe.

There is a vast literature on bundle gerbes in differential geometry such as [Mur96], [Bun21a],
[Ste04]. Typically bundle gerbes are defined as geometric objects, and then shown to define
cohomology classes through cocycles such as above. However, giving descriptions of bundle
k-gerbes as geometric objects becomes difficult and tedious as k grows. Their description as
cocycles is much more economical, and is all we need for this paper. There should be no dif-
ficulty in translating between the geometric description of diffeological bundle 1-gerbes, such
as in [Wal12] and the cocycle description we give here, but we leave this to future work.

14Notice that the definition above is precisely the opposite of the corresponding∞-stack considered in [FSS+12,
Section 3]. This is because of the convention we use in [Min22, Example 5.13]. However this makes no difference
on the theory as we show in Appendix A.
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Example 6.7. For k ≥ 1, let Bk∇R
15 denote the simplicial presheaf obtained by applying Dold-

Kan to the following presheaf of chain complexes16

(61) [R
d−→Ω1 d−→Ω2→ ·· · →Ωk].

This complex is often referred to as the Deligne complex when R is replaced with U (1) and
d : R → Ω1 is replaced with d log : U (1) → Ω1. For k ≥ 2, Bk∇R classifies R-bundle (k − 1)-
gerbes with connection, and∞-stack cohomology with values in Bk∇R is called pure differential
cohomology17 in [Jaz21, Definition 3.2.10]. Thus we call Bk∇R the pure k-Deligne complex.

Given a diffeological space X, we will denote ∞-stack cohomology with values in the pure
k-Deligne complex by

Ȟk
∞,∇(X,R)B Ȟ0

∞(X,Bk∇R).

Let us also note that when k = 1, we have an objectwise weak equivalence of∞-stacks

B∇R ≃ (Ω1(−)//R)op.

To see this, note that both of the simplicial presheaves are identical in simplicial degrees 0 and
1. This is because R is abelian, so t(ω,g) = Ad−1

g (ω) + g∗mc(R) = ω + dg in (Ω1(−)//R)op, which
is precisely the face map d0 : B∇R1 → B∇R0. Since (Ω1(−)//R)op is the nerve of a presheaf
of groupoids, it is 2-coskeletal, and therefore its k-homotopy groups are trivial for k ≥ 2. The
objectwise homotopy groups of B∇R are given by the objectwise homology of the chain complex
by the Dold-Kan correspondence, and thus are also trivial for k ≥ 2, thus they are objectwise
weak equivalent. The distinction between Ω1(−)//R and (Ω1(−)//R)op is because of [Min22,
Example 5.13], so technically B∇R classifies diffeological principal Rop-bundles with opposite
connection, but this distinction is immaterial to the theory and we sweep it under the rug, and
we say that the above classifies diffeological principal R-bundles with connection.

If X is a diffeological space, then as we will see in Example 6.13, a R-bundle (k − 1)-gerbe
with connection on X is given by the data

(62) (ωk ,ωk−1, . . . ,ω1, g) ∈Ωk(QX0)⊕Ωk−1(QX1)⊕ · · · ⊕Ω1(QXk−1)⊕R(QXk),

such D(ωk , . . . , g) = 0 in the double complex Ωi(QXj ), see Appendix B. We will let [ωk , . . . , g]
denote the isomorphism class it represents in Ȟk

∞,∇(X,R).

Example 6.8. For k ≥ 1, consider the∞-stack BkRδ. This∞-stack classifies diffeological prin-
cipal Rδ-bundles. However, note that there is a map of presheaves of chain complexes

(63) [Rδ→ 0→ ·· · → 0]→ [R
d−→Ω1 d−→ ·· · d−→Ωk

cl]

given by the inclusion R
δ ↪→ R. Furthermore, this map is an objectwise quasi-isomorphism,

by the Poincare lemma. Thus we will take the right hand side of (63) to be the model of BkRδ

we will use for the rest of this paper. From this presentation, it is easy to see that BkRδ is
equivalently the∞-stack that classifies diffeological principal R-bundle (k−1)-gerbes with flat
connection.

Example 6.9. For k ≥ 1, consider the ∞-stack BkΩ1
cl. There is a map of presheaves of chain

complexes

(64) [Ω1
cl→ 0→ ·· · → 0]→ [Ω1 d−→Ω2 d−→ . . .

d−→Ωk
cl]

and this map is an objectwise quasi-isomorphism again by the Poincare lemma. We take the
right hand side to be the model we will use for BkΩ1

cl for the rest of the paper.

15Note that the Bk in Bk∇R is just notation, it is not actually the delooping of anything.
16Note that the way this chain complex is written, Ωk is in degree 0.
17We also recommend [Jaz21, Section 3.2] for a discussion of how pure differential cohomology fits into the

hexagon diagram of differential cohomology.
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Example 6.10. For k ≥ 1, let Ω1≤•≤k denote the simplicial presheaf obtained by applying Dold-
Kan to the following presheaf of chain complexes

(65) [Ω1 d−→Ω2→ ·· · →Ωk].

If X is a diffeological space and A is a k-deloopable∞-stack, recall that its∞-stack cohomol-
ogy is given by

Ȟk
∞(X,A) = RȞ(X,BkA).

Let us compute an example of ∞-stack cohomology for a diffeological space X with values in
the ∞-stack BΩ1, as it will be emblematic of how we compute ∞-stack cohomology for all of
the relevant examples presented in this section. In Appendix B we go into detail on how to
compute such examples.

Example 6.11. Let A′ = BΩ1 = [Ω1→ 0] and A = DKA′. Let us compute H0(X,A) for a diffeo-
logical space X using Proposition B.3. Consider the double complex A′(QX),

(66)
Ω1(QX0) Ω1(QX1) Ω1(QX2) . . .

0 0 0 . . .

δ −δ

so that totA′(QX) is the chain complex

(67) totA′(QX) = [Ω1(QX0)
D−→ ker(−δ : Ω1(QX1)→Ω1(QX2))]

Thus a 0-cycle in totA′(QX) consists of a collection {ωf0 ∈ Ω1(Up1
)}f0:Up1→Up0

of 1-forms for
every map of plots of X such that −δω = 0, which is equivalent to the condition that for every

pair of composable plot maps Up2

f1−→Up1

f0−→Up0
we have

(δω)(f1,f0) = f ∗1ωf0 −ωf0f1 +ωf1 = 0.

Two such 0-cocycles are cohomologousω ∼ω′ if there exists a collection {λp0
∈Ω1(Up0

)}p0∈Plot(X)
of 1-forms for every plot of X such that

(Dλ)f0 = (δλ)f0 =ω′f0 −ωf0
for every map f0 : Up1

→ Up0
of plots of X. Thus Ȟ0

∞(X,BΩ1) = Ȟ1
∞(X,Ω1) is precisely analo-

gous to the term H1,1
δ in [Igl23, Section 4.4].

Example 6.12. Let us compute Ȟ1
∞,∇(X,R)B Ȟ0

∞(X,B∇R) for a diffeological space X. Consider
the double complex

(68)

R(QX0) R(QX1) R(QX2) . . .

Ω1(QX0) Ω1(QX1) Ω1(QX2) . . .

d

δ −δ

−δ

d d

δ

where R(QXi) = C∞(QXi ,R). A 0-cocycle is the data of a map g : QX1 → R and a 1-form
A ∈ Ω1(QX0) such that −δg = 0 and −δA = dg. The condition −δg = δg = 0 is equivalent

to the condition gf0f1 = f ∗1 gf0 + gf1 for every pair of composable plot maps Up2

f1−→ Up1

f0−→ Up0
,

which is precisely the condition for g to be a cocycle defining a diffeological principal R-bundle
on X, see [Min22, Section 5]. The condition δA = dg is equivalent to the condition that for
every map of plots f0 : Up1

→ Up0
we have Ap1

− f ∗0Ap0
= dgf0 , which is precisely the equation

for a connection on a diffeological principal R-bundle, see Appendix A. Given two 0-cocycles
(A,g) and (A′ , g ′), a 1-coboundary consists of an element h ∈ R(QX0) such that δh = g ′ − g and
dh = A′ − A. This is precisely the definition of a morphism of G-cocycles with connection,
see Definition A.1. Thus an element of Ȟ1

∞,∇(X,R) is an isomorphism class of a diffeological
principal R-bundle on X with connection.
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Example 6.13. Let us compute Ȟ2
∞,∇(X,R) for a diffeological space X. Consider the double

complex

(69)

R(QX0) R(QX1) R(QX2) . . .

Ω1(QX0) Ω1(QX1) Ω1(QX2) . . .

Ω2(QX0) Ω2(QX1) Ω2(QX2) . . .

d

−δ δ

δ

d d

−δ

d

−δ

d

δ

d

Then a 0-cycle in totB2
∇R(QX) is an element (ω,A,g) ∈Ω2(QX0)⊕Ω1(QX1)⊕R(QX2) such that

D(ω,A,g) = 0. This is equivalent to the equations −δω = dA, −δA = dg and −δg = 0. The
equation −δg = δg = 0 is equivalent to the condition that for every triple of composable maps
of plots (f2, f1, f0) of X, we have

(70) (δg)(f2,f1,f0) = f ∗2 g(f1,f0) − g(f1f2,f0) + g(f2,f0f1) − g(f2,f1) = 0.

This is the diffeological analogue of the cocycle data of a R-bundle gerbe on X. The other
two equations −δω = dA and −δA = dg are the diffeological analogue of the cocycle data of a
connection on a R-bundle gerbe. Thus Ȟ2

∞,∇(X,R) = Ȟ0
∞(X,B2

∇R) can be taken as the definition
of the abelian group of isomorphism classes of diffeological R-bundle 1-gerbes with connection
on X. The story for k ≥ 2 is exactly analogous, and thus we take our definition of the abelian
group of isomorphism classes of diffeological R-bundle (k − 1)-gerbes with connection to be
Ȟk
∞,∇(X,R) = Ȟ0

∞(X,Bk∇R).

7. The Čech de Rham Obstruction

In this section, we obtain a diffeological Čech-de Rham obstruction exact sequence in every
degree from a homotopy pullback diagram of ∞-stacks. In degree 1, our exact sequence is
analogous to [Igl23].

Let X be a diffeological space. In [Igl23], Iglesias-Zemmour constructs the following exact
sequence of vector spaces

(71) 0→H1
dR(X)→ Ȟ1

P IZ(X,Rδ)→ dE1,0
2 (X)

c1−−→H2
dR(X)→ Ȟ2

P IZ(X,Rδ)

using the five term exact sequence coming from a diffeological version of the Čech-de Rham bi-
complex spectral sequence. The vector space dE1,0

2 (X) is the subspace of isomorphism classes of
diffeological principal R-bundles onX that admit a connection, and the vector spaces Ȟk

PIZ(X,Rδ)
are Iglesias-Zemmour’s version of diffeological Čech cohomology, which we refer to as PIZ co-
homology. The relationship between PIZ cohomology and ∞-stack cohomology is only par-
tially understood, see [Min22, Section 5].

The exact sequence (71) demonstrates the obstruction to the Čech-de Rham Theorem hold-
ing for diffeological spaces. For finite dimensional smooth manifolds, all principal R-bundles
are trivial, as they have contractible fiber, and thus the obstruction vanishes. However, there
are diffeological spaces (the irrational torus for example) that have nontrivial principal R-
bundles that admit connections [Igl13, Article 8.39].

We construct and geometrically interpret the obstruction to the Čech-de Rham isomorphism
in each degree k ≥ 1 via∞-stacks.



THE DIFFEOLOGICAL ČECH-DE RHAM OBSTRUCTION 23

Theorem 7.1. For every k ≥ 1, there exists a commutative diagram of∞-stacks of the following
form

(72)

∗ BkRδ ∗ ∗

∗ Bk∇R Ωk+1
cl Ωk+1

BkR BkΩ1
cl Ω1≤•≤k+1

∗ Bk+1
R
δ Bk+1

∇ R

furthermore every commutative square in this diagram is a homotopy pullback square in Ȟ.

We prove Theorem 7.1 in Appendix C.

Corollary 7.2. For every diffeological space X, there is an exact sequence of vector spaces18

(73) 0→ Ȟk
∞(X,Rδ)→ Ȟk

∞,∇(X,R)→Ωk+1
cl (X)→ Ȟk+1

∞ (X,Rδ).

Proof. This follows from Theorem 7.1 and Lemma C.6. □

Let us explore the consequences of Corollary 7.2 in the case where X is the irrational torus.
Let K = Z+αZ be the subgroup of R consisting of those x ∈ R of the form n+αm where n,m
are integers and α is an irrational number. Let Tα = R/Z + αZ. We can fully compute the de
Rham and ∞-stack cohomology of Tα. Every differential form on Tα is closed [Igl13, Exercise
119] so Ωk(Tα) = Ωk

cl(Tα) = Hk
dR(Tα), and furthermore Ωk

cl(Tα) � Λk
R by [Igl13, Exercise 105].

Therefore we have

(74) Ωk
cl(Tα) =Hk

dR(Tα) �

R, k = 0,1
0, k > 1.

Now by Theorem 4.4, we have

(75) Ȟk
∞(Tα ,R

δ) � Ȟ0
∞(B(Z+αZ),BkRδ) � Ȟ0

∞(BZ2,BkRδ) � Ȟk
∞(T 2,Rδ) �


R, k = 0,2
R

2, k = 1
0, k > 2,

where T 2 denotes the usual 2-dimensional torus.
From Corollary 7.2, setting k = 1, we obtain the exact sequence

(76) 0→ Ȟ1
∞(Tα ,R

δ)→ Ȟ1
∞,∇(Tα ,R)→Ω2

cl(Tα)→ Ȟ2
∞(Tα ,R

δ).

Since Ω2
cl(Tα) = 0, this implies that Ȟ1

∞,∇(Tα ,R) � Ȟ1
∞(Tα ,Rδ) �R

2.
From Corollary 7.2, setting k = 2, we obtain the exact sequence

(77) 0→ Ȟ2
∞(Tα ,R

δ)→ Ȟ2
∞,∇(Tα ,R)→Ω3

cl(Tα)→ Ȟ3
∞(Tα ,R

δ),

but Ω3
cl(Tα) � H3

dR(Tα) � 0 � Ȟ3
∞(Tα ,Rδ), thus Ȟ2

∞,∇(Tα ,R) � R. Similar reasoning proves that
Ȟk
∞,∇(Tα ,R) � 0 for k > 2. Thus we have proven the following.

Theorem 7.3. Let Tα denote the irrational torus, then

(78) Ȟk
∞,∇(Tα ,R) �


R

2, k = 1,
R, k = 2,
0, k > 2.

18Near the completion of this paper, we learned that an analogous exact sequence was also obtained in [Jaz21,
Page 27] using completely different methods in the framework of homotopy type theory.
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The reader should note that the above computations only work because the irrational torus
has the property that its deRham cohomology is equal to its closed forms. This is not the
case for general diffeological spaces, and therefore Corollary 7.2 is not generally helpful for
computations. Therefore we desire an exact sequence which uses the deRham cohomology of
a diffeological space rather than its closed forms.

Definition 7.4. Given a diffeological space X and k ≥ 1, let Ȟk
conn(X,R) denote the subspace

of Hk
dR(X)⊕ Ȟk

∞(X,R) generated by the subset of pairs ([F], [g]) where F is the curvature form
F = dωk of a diffeological R-bundle (k − 1)-gerbe with connection (ωk ,ωk−1, . . . ,ω1, g).

The vector space Ȟk
conn(X,R) sits in an exact sequence

(79) 0→ Ȟk
∞,triv(X,Rδ)→ Ȟk

∞,∇(X,R)→ Ȟk
conn(X,R)→ 0,

where Ȟk
∞,triv(X,Rδ) ⊂ Ȟk

∞(X,Rδ) is the subspace of isomorphism classes of trivial R-bundle
(k − 1)-gerbes with flat connection.

Let us now define a new sequence of vector spaces

Ȟk
∞(X,Rδ)

α−→ Ȟk
conn(X,R)

β
−→Hk+1

dR (X)
γ
−→ Ȟk+1

∞ (X,Rδ).

The map α takes an isomorphism class of an R-bundle k-gerbe with flat connection [ωk , . . . ,ω1, g]
and gives (0, [g]). The map β sends ([F], [g]) 7→ [F]. Finally, γ sends [ω] to the isomorphism
class of the R-bundle k-gerbe with connection (ω,0, . . . ,0). This map is well defined, because if
ω′ −ω = dτ for some τ ∈Ωk(X), then (ω′ −ω,0, . . . ,0) =D(τ,0, . . . ,0).

Theorem 7.5. Given a diffeological space X and k ≥ 1, the sequence of vector spaces

(80) Ȟk
∞(X,Rδ)

α−→ Ȟk
conn(X,R)

β
−→Hk+1

dR (X)
γ
−→ Ȟk+1

∞ (X,Rδ)

is exact.

Proof. Note that βα = 0. Suppose ([F], [g]) ∈ Ȟk
conn(X,R) and consider γβ([F], [g]) = [F,0, . . . ,0].

Since ([F], [g]) ∈ Ȟk
conn(X,R), there exists a R-bundle (k−1)-gerbe with connection (ωk , . . . ,ω0, g)

such that
D(ωk , . . . ,ω0, g) = (F,0, . . . ,0).

Therefore [F,0, . . . ,0] = 0. In fact, γβ([F], [g]) = 0 if and only if there exists an R-bundle (k − 1)-
gerbe with connection such that the above equation holds. This implies that kerγ = imβ.

Now suppose that β([F], [g]) = [F] = 0. Then there exists a global k-form τ such that dτ = F.
Since ([F], [g]) ∈ Ȟk

conn(X,R), there exists an R-bundle (k − 1)-gerbe (ωk , . . . , g) such that dωk =
F. Then ωk − τ ∈ Ωk(QX0), d(ωk − τ) = 0 and δ(ωk − τ) = δωk − δτ = δωk . Therefore (ωk −
τ,ωk−1, . . . ,ω0, g) defines an R-bundle k-gerbe with flat connection. Thus ([F], [g]) = (0, [g]) ∈
imα. □

We will refer to the exact sequence (80) as the degree k PIZ exact sequence. When k = 1,
there is an interesting additional phenomenon.

Lemma 7.6. Let (A,g) and (A′ , g) be R-bundle 0-gerbes/diffeological principal R-bundles with
connection on a diffeological space X with the same underlying R-cocycle g, then dA and dA′

are global closed 2-forms on X and their de Rham cohomology classes agree [dA] = [dA′].

Proof. Since (A,g) and (A′ , g) are both R-bundle 0-gerbes with connection on X, this implies
that for every map of plots f0, we have

−(δA)f0 = dgf0 = −(δA′)f0 .

Now consider the form A′ −A ∈Ω1(QX0), defined plotwise by (A′ −A)p0
= A′p0

−Ap0
. This is a

global 1-form, because for every plot map f0 we have

(δ(A′ −A))f0 = (δA′)f0 − (δA)f0 = 0.
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Thus A′−A ∈Ω1(X). Similarly dA′ and dA are also global 2-forms on X. Now d(A′−A) ∈Ω2(X)
is an exact form, and dA′ − dA = d(A′ − A). Thus dA′ and dA represent the same de Rham
cohomology class. □

Lemma 7.6 implies that Ȟ1
conn(X,R) is isomorphic to the subspace of Ȟ1

∞(X,R) generated by
the subset of those diffeological principal R-bundles that admit a connection, as every connec-
tion produces a unique cohomology class. Thus we see that Ȟ1

conn(X,R) is exactly analogous to
the term dE1,0

2 (X) in (71).
Now the degree k PIZ exact sequence (80) seems to be missing two terms compared to (71).

These two terms reappear when k = 1, as we shall now prove.

Theorem 7.7. Given a diffeological space X, there exists a map θ : H1
dR(X)→ Ȟ1

∞(X,Rδ) such
that the sequence of vector spaces

(81) 0→H1
dR(X)

θ−→ Ȟ1
∞(X,Rδ)

α−→ Ȟ1
conn(X,R)

β
−→H2

dR(X)
γ
−→ Ȟ2

∞(X,Rδ)

is exact.

Proof. The sequence is exact everywhere except for H1
dR(X) and Ȟ1

∞(X,Rδ) by Theorem 7.5.
Now recall the isomorphism ϕ : Ȟ0

∞(X, [Rδ → 0]) → Ȟ0
∞(X, [R → Ω1

cl]) induced by the map
of presheaves of chain complexes described in Example 6.8 for k = 1. The map ϕ takes an
isomorphism class of a diffeological principal Rδ-bundle cocycle [g] and gives the isomorphism
class of the R-bundle 0-gerbe with connection [0, g]. Let θ :H1

dR(X)→ Ȟ0
∞(X, [Rδ→ 0]) denote

the map defined as follows. Let [A] ∈H1
dR(X) denote a cohomology class, and suppose that A is

a global closed 1-form representing this class. Since it is closed, there exists an a ∈R(QX0) such
that da = A. Then δa defines an R

δ cocycle, as dδa = δA = 0. Let θ([A]) = [δa]. This map is well
defined, as suppose that a,a′ ∈ R(QX0) such that da = da′ = A. Then a− a′ is a R

δ-coboundary
between δa and δa′ as d(a− a′) = A−A = 0 and δa− δa′ = δ(a− a′), so [δa] = [δa′].

We have a commutative diagram

(82)

H1
dR(X) Ȟ0

∞(X, [Rδ→ 0]) Ȟ1
conn(X,R)

Ȟ0
∞(X, [R→Ω1

cl])

ϕ

θ

θ′

α

where α takes a R
δ-cocycle and considers it as a R-cocycle, and θ′([A]) = [−A,0]. Now ϕθ = θ′

because ϕθ([A]) = [0,δa], θ′([A]) = [−A,0], and (−A,0)− (0,δa) = (−A,−δa) = (−da,−δa) =D(−a).
Clearly αθ = 0. Let us show that imθ = kerα. Suppose that [g] is the isomorphism class of

a diffeological principal Rδ-bundle such that it is trivial as a diffeological principal R-bundle.
Then there exists a λ ∈ R(QX0) such that g = δλ. Then θ([dλ]) = [g]. Now let us show that θ
is injective. It is enough to show that θ′ is injective, as ϕ is an isomorphism. Suppose that [A]
and [B] are cohomology classes such that θ′([A]) = [−A,0] = [−B,0] = θ′([B]). Then there exists
a τ ∈ R(QX0) such that (−A − (−B),0) = (B −A,0) = Dτ , which implies that δτ = 0, so that τ is
a global 0-form and dτ = B−A. Thus [A] = [B]. Thus we have proven that θ is injective. Now
abuse notation and let Ȟ1

∞(X,Rδ) = Ȟ0
∞(X, [Rδ → 0]). This proves that the above sequence is

exact everywhere. □

Considering again the case where X = Tα is the irrational torus, from (74), (75) and (81), we
obtain that

(83) Ȟ1
conn(Tα ,R) �R,

which agrees with [Igl23]. From (79) and Theorem 7.3 we then obtain an isomorphism

(84) Ȟ1
∞,triv(Tα ,R

δ) �R.

Similarly, from (80) we obtain an exact sequence

R→ Ȟ2
conn(Tα ,R)→ 0
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so that Ȟ2
conn(Tα ,R) is either 0 or R.

Appendix A. Diffeological Principal Bundles with Connection

In this section we show that the notion of diffeological principal G-bundle with connection
introduced in Example 6.4 is equivalent to Waldorf’s, given in [Wal12, Definition 3.2.1].

Given a diffeological spaceX, and a Lie groupG, recall the definition of the∞-stack Ω1(−,g)//G
from Example 6.4. The data of a map QX → Ω1(−,g)//G is equivalent to a G-cocycle g and a
collection A = {Ap0

} of 1-forms Ap0
∈Ω1(Up0

,g) satisfying

Ap1
= Ad−1

gf0
(f ∗0Ap0

) + g∗f0mc(G).

for every plot p0 : Up0
→ X. We refer to such a map QX → Ω1(−,g)//G as a G-cocycle with

connection.

Definition A.1. Let Coc∇(X,G) denote the category whose objects are G-cocycles with con-
nection on X, and whose morphisms h : (A,g) → (A′ , g ′) are collections h = {hp0

} of maps
hp0

: Up0
→ G such that h is a morphism of G-cocycles in the sense of Definition 2.6 and

Ap0
= Ad−1

hp0
(A′p0

) + h∗p0
mc(G) for every plot p0 of X. It is easy to see that this category is a

groupoid.

Definition A.2. Let π : P → X be a diffeological principal G-bundle where G is a Lie group. A
Waldorf connection on P is a 1-form ω ∈Ω1(P ,g) such that

(85) ρ∗ω = Ad−1
g (pr∗ω) + g∗mc(G)

where ρ : P ×G→ P is the action map, and g : P ×G→ G and pr : P ×G→ P are the corresponding
projection maps.

A morphism f : (ω,P ) → (ω′ , P ′) of diffeological principal G-bundles on X with Waldorf
connections is a morphism of diffeological principal G-bundles f : P → P ′ such that f ∗ω′ = ω.
Such morphisms are isomorphisms. Given a diffeological space X, let WalG(X) denote the
groupoid of diffeological principal G-bundles on X equipped with a Waldorf connection.

In [Min22, Section 3], we showed there is a functor Cons : Coc(X,G) → DiffPrinG(X) that
takes a G-cocycle g and constructs a diffeological principal G-bundle Cons(g) = π : P → X on
X. Furthermore, by Theorem 2.7, this functor is an equivalence. Thus we need only understand
how to construct a Waldorf connection from the collection A = {Ap0

} of 1-forms and vice versa.
So let g = {gf0} be a fixedG-cocycle representing a diffeological principalG-bundle Cons(g) =

π : P → X. We wish to construct a 1-formω on P from aG-cocycle with connection A on X. The
diffeological principal G-bundle Cons(g) has a canonical plotwise trivialization ϕp0

:Up0
×G→

p∗0P such that if f0 :Up1
→Up0

is a map of plots, then the induced map f̃0 :Up1
×G→Up0

×G is
given by f̃0(xp1

,h) = (f0(xp1
), gf0(xp1

) · h), where gf0 : Up1
→ G is the component of the G-cocycle

on f0. See [Min22, Section 3] for more details.
Now let q0 :Uq0

→ P be a plot. We obtain a commutative diagram

(86)

Uq0

Uq0
×G p∗0P P

Uq0
X

π

p0

⌟

ϕp0

kq0

q0

1Uq0

where p0 = πq0 and kq0
: Uq0

→ Uq0
×G is the unique map given by the universal property of

the pullback Uq0
×G � p∗0P . Since this map is over Uq0

, we have kq0
(xq0

) = (xq0
, gq0

(xq0
)) for a

unique map gq0
:Uq0

→ G.
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Now if f0 :Up1
→Up0

is a map of plots, we obtain a commutative diagram

(87)

Uq1
Uq0

Uq1
×G Uq0

×G

P

kq1

f̃0

kq0

f0

which implies that if xq1
∈Uq1

, then

f̃0kq1
(xq1

) = f̃0(xq1
, gq1

(xq1
)) = (f0(xq1

), gf0(xq1
) · gq1

(xq1
)) = (f0(xq1

), gq0
(f0(xq1

)) = kq0
f0(xq1

).

From this we obtain the equation

(88) gf0 · gq1
= (gq0

◦ f0).

Now suppose that A = {Ap0
} is a G-cocycle with connection for the fixed cocycle g. We wish to

obtain a 1-form on P . Since P is a diffeological space, we can define it plotwise. Given a plot
q0 : Uq0

→ P , we obtain a plot p0 : Uq0
→ X of the base X by setting p0 = πq0. Thus there is a

1-form Ap0
∈Ω1(Uq0

,g) from the G-cocycle with connection. Now let

(89) Bq0
= Ad−1

gq0
(Ap0

) + g∗q0
mc(G).

Thus Bq0
∈ Ω1(Uq0

,g). We wish to show that this defines a 1-form on P , namely we need to
check that if f0 :Uq1

→Uq0
is a map of plots of P , then

(90) f ∗0Bq0
= Bq1

.

So let f0 :Uq1
→Uq0

be such a map of plots. Then we have

(91)

f ∗0Bq0
= f ∗0

(
Ad−1

gq0
(Ap0

) + g∗q0
mc(G)

)
= Ad−1

(gq0◦f0)(f
∗

0Ap0
) + (gq0

◦ f0)∗mc(G)

= Ad−1
gq1

Ad−1
gf0

(f ∗0Ap0
) + (gf0 · gq1

)∗mc(G)

= Ad−1
gq1

Ad−1
gf0

(f ∗0Ap0
) + Ad−1

gq1
(g∗f0mc(G)) + g∗q1

mc(G)

= Ad−1
gq1

(
Ad−1

gf0
(f ∗0Ap0

) + g∗f0mc(G)
)

+ g∗q1
mc(G)

= Ad−1
gq1

(Ap1
) + g∗q1

mc(G)

= Bq1
.

We have used the product rule for the Maurer-Cartan form

(92) (g · h)∗mc(G) = Ad−1
h (g∗mc(G)) + h∗mc(G),

on the fourth line above, which can easily be verified using the description of mc(G) as g−1dg.
Thus the collection {Bq0

} defines a 1-form ω ∈ Ω1(P ,g) with ωq0
= Bq0

. We must still show
that ω is a Waldorf connection.

We will check the equation (85) plotwise on P ×G. A plot of P ×G is a pair of plots q0 :Uq0
→ P

and h0 : Uq0
→ G, which we shall pair to form the plot ⟨q0,h0⟩ : Uq0

→ P ×G. Let us examine
(ρ∗ω)⟨q0,h0⟩. This is the 1-form ωρ⟨q0,h0⟩, where ρ : P ×G → P is the action map. We can thus
write ρ⟨q0,h0⟩ = q0 ·h0, where · is the action ofG on P . Thus we wish to computeωq0·h0

. Looking
plotwise, it is easy to see that

(93) gq0·h0
= gq0

· h0.
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Thus we have

(94)

ωq0·h0
= Bq0·h0

= Ad−1
gq0 ·h0

(Ap0
) + g∗q0·h0

mc(G)

= Ad−1
h0

Ad−1
gq0

(Ap0
) + (gq0

· h0)∗mc(G)

= Ad−1
h0

Ad−1
gq0

(Ap0
) + Ad−1

h0
g∗q0

mc(G) + h∗0mc(G)

= Ad−1
h0

(Bq0
) + h∗0mc(G).

Pulling back to P × G gives precisely the equation (85). So given a G-cocycle with connec-
tion (A,g), let Cons∇(A,g) = (ω,P ) denote the diffeological principal G-bundle P = Cons(g)
equipped with Waldorf connection ω.

Now suppose that h : (A,g) → (A′ , g ′) is a morphism of G-cocycles with connection on X.
We wish to obtain a morphism of diffeological principal G-bundles that preserve the Waldorf
connection. By [Min22, Section 3], we know that Cons(h) : Cons(g)→ Cons(g ′) is a map of the
respective diffeological principal G-bundles. We need only show that Cons(h) preserves the
Waldorf connection. Let (ω,P ) = Cons∇(A,g) and (ω′ , P ′) = Cons∇(A′ , g ′), and let h̃ = Cons(h)
denote the corresponding morphism given by the morphism h of G-cocycles. For every plot
q0 :Uq0

→ P we obtain the following commutative diagram

(95)

Uq0

Uq0
×G Uq0

×G

P P ′
h̃

kq0
k′
h̃q0

lq0
l′
h̃q0

h̃q0

where h̃q0
(xq0

, g) = (xq0
,hq0

(xq0
) · g) for hq0

: Uq0
→ G the component of the morphism h of

cocycles. The above diagram also implies that

(96) k′
h̃q0

(xq0
) = (xq0

, g ′
h̃q0

(xq0
)) = (xq0

,hp0
(xq0

) · gq0
(xq0

)) = h̃q0
kq0

(xq0),

and thus we have

(97) g ′
h̃q0

= hq0
· gq0

.

We wish to show that h̃∗ω′ =ω. It is therefore equivalent to show that

(98) (̃h∗ω′)q0
=ω′

h̃q0
= B′

h̃q0
= Bq0

=ωq0
.

Now we have

(99)

B′
h̃q0

= Ad−1
gh̃q0

(A′p0
) + g ′∗

h̃q0
mc(G)

= Ad−1
gq0

Ad−1
hp0

(A′p0
) + (hp0

· gq0
)∗mc(G)

= Ad−1
gq0

Ad−1
hp0

(A′p0
) + Ad−1

gq0
(h∗p0

mc(G)) + g∗q0
mc(G)

= Ad−1
gq0

(Ad−1
hp0

(A′p0
) + h∗p0

mc(G)) + g∗q0
mc(G)

= Ad−1
gq0

(Ap0
) + g∗q0

mc(G)

= Bq0
.

Thus h̃ : P → P ′ preserves the Waldorf connections. In summary, we have constructed a functor
Cons∇ : Coc(X,G) → WalG(X). Now we wish to show that this functor is an equivalence of
groupoids.

Now let us show that if we have a Waldorf connection ω on P , we can obtain an G-cocycle
with connection. Suppose that π : P → X is a diffeological principal G-bundle, and choose a
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fixed plotwise trivialization ϕ. From this we obtain a G-cocycle g. Suppose that ω ∈Ω1(P ,g) is
a Waldorf connection, and let p0 :Up0

→ X be a plot. We obtain the commutative diagram

Up0
×G p∗0P P

Up0
X

π

p0

ψp0

⌟

ϕp0

σp0

where ϕp0
is the fixed trivialization, which is a G-equivariant diffeomorphism over Up0

, and
σp0

: Up0
→ Up0

×G is the canonical section σp0
(xp0

) = (xp0
, eG). Let q0 : Up0

→ P be given by
q0 = ψp0

ϕp0
σp0

. Suppose that f0 :Up1
→Up0

is a map of plots of X. Then we obtain a diagram

Up1
Up0

Up1
×G Up0

×G

p∗1P p∗0P

P

σp1

f̃0

σp0

f0

ϕp1 ϕp0

ψp1 ψp0

f̂0

Notice that the middle square and the bottom triangle commute, but the top square does not
commute, as f̃0σp1

(xp1
) = (f0(xp1

), gf0(xp1
)) while σp0

(f0(xp1
)) = (f0(xp1

), eG). Thus we have

(100)

q1(xp1
) = (ψp1

ϕp1
σp1

)(xp1
)

= ψp0
ϕp0

f̃0σp1
(xp1

)

= ψp0
ϕp0

(f0(xp1
), gf0(xp1

))

= (ψp0
ϕp0

)
[
(f0(xp1

), eG) · gf0(xp1
)
]

= (ψp0
ϕp0

σp0
f0)(xp1

) · gf0(xp1
)

= (q0 ◦ f0)(xp1
) · gf0(xp1

).

where on the fourth line we used the fact that ϕp0
and ψp0

are G-equivariant.
Thus we have obtained the equation

(101) q1 = (q0 ◦ f0) · gf0 .

Now let Ap0
= ωq0

. Note that f ∗0Ap0
, Ap1

since f0 is not a map of plots from q1 and q0, i.e.
(q0 ◦ f0) , q1. Consider the equation (85) at the plot ⟨(q0 ◦ f0), gf0⟩ :Uq1

→ P ×G. Note that

(102) (ρ∗ω)⟨(q0◦f0),gf0 ⟩ =ωρ⟨(q0◦f0),gf0 ⟩ =ω(q0◦f0)·gf0 =ωq1
= Ap1

,

and

(103) Ad−1
gf0

((pr∗ω)⟨(q0◦f0),gf0 ⟩) + g∗f0mc(G) = Ad−1
gf0

(ω(q0◦f0)) + g∗f0mc(G).

Now f ∗0Ap0
= f ∗0ωq0

= ω(q0◦f0) because f0 is a plot map from q0 to (q0 ◦ f0) trivially, and ω is a
1-form on P . Thus we obtain equation (60), so the collection A = {Ap0

} defines a G-cocycle with
connection on X.

Now if h̃ : (ω,P )→ (ω′ , P ′) is a map of diffeological principal G-bundles with Waldorf con-
nection, we want to show that it induces a map of G-cocycle with connection. We know that
h̃ induces a map h of the G-cocycles g and g ′ representing P and P ′ respectively, and we wish
to show that Ap0

= Ad−1
hp0

(A′p0
) + h∗p0

mc(G) for every plot p0 : Up0
→ X. We know that h̃∗ω′ = ω,
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which is equivalent to asking that B′
h̃q0

= Bq0
. So if p0 is a plot of X, then we obtain a plot

q0 :Up0
→ P in the same way as above. We obtain

(104)

Ap0
= Adgq0

(Bq0
− g∗q0

mc(G))

= Adgq0
(B′
h̃q0
− g∗q0

mc(G))

= Adgq0
[Adgh̃q0

(A′p0
) + g∗

h̃q0
mc(G)− g∗q0

mc(G)]

= Adgq0
Ad−1

gq0
Ad−1

hp0
(A′p0

) + Adgq0
Ad−1

gq0
(h∗p0

mc(G))

+ Adgq0
(g∗q0

mc(G))−Adgq0
(g∗q0

mc(G))

= Ad−1
hp0

(A′p0
) + h∗p0

mc(G),

where we have basically done the computation of (99) in reverse. Thus h is a morphism of
G-cocycles with connection.

Theorem A.3. Given a diffeological space X and a Lie group G, the functor

(105) Cons∇ : Coc∇(X,G)→WalG(X),

is an equivalence of groupoids.

Proof. This follows from combining [Min22, Theorem 5.13] with the above constructions. □

Remark A.4. It should be said that when G = R or G = S1, one can check that a Waldorf
connection reduces to a connection 1-form in the sense of [Igl23, Section 5.3], thus we have an
equivalence between all three definitions of diffeological principal G-bundle with connection
in these cases.

Remark A.5. There is nothing stopping one from extending the above definition to the case
whenG is a diffeological group. In this case then g should be the internal tangent space [CW15]
to the diffeological group G at the identity. Nothing in this Appendix depended on G being a
Lie group, so the whole previous discussion extends to this case. It is an interesting question
to see how far one can go with this analogy. For instance, does this extended definition agree
with that given in [Igl13, Article 8.32]? We leave this question for future work.

Appendix B. Totalization

Given a presheaf of chain complexes A and a diffeological space X, we wish to compute the
∞-stack cohomology of X with values in A. This is defined as the abelian group

(106) Ȟ0
∞(X,A)B π0RȞ(X,A).

We will use the Dold-Kan correspondence to get an amenable model for the homotopy type
of RȞ(X,A).

Let C be a cosimplicial chain complex, whose cosimplicial degree is denoted by the chain
complex Cp. The qth degree of the chain complex Cp is denoted Cp,q, with differential d :
Cp,q → Cp,q−1. From a cosimplicial chain complex we can obtain a (mixed) double complex
by applying the dual of the Dold-Kan correspondence [Min22, Section 4.3] to C• to obtain a
Z≥0 ×Z≥0-graded vector space with two operators d : Cp,q→ Cp,q−1 given by the differential of
each Cp and δ : Cp,q→ Cp+1,q defined as the alternating sum

∑p
i=0(−1)idi of the coface maps of

C, with the property that dδ = δd. From this we can obtain an unbounded (Z-graded) chain
complex K = totZC, with

(107) (totZC)k =
∏
q−p=k

Cp,q

and differential D = (d − (−1)q−pδ). In order to obtain a non-negatively graded chain complex,
we apply smart truncation to obtain totC = τ≥0totZC.
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Proposition B.1. Given a cosimplicial chain complex C, we have the following isomorphism
of chain complexes,

(108)
∫
n∈∆

MapCh(NR[∆n],Cn) � totC,

where MapCh(NR[∆n],Cn) is the mapping chain complex defined by (55).

Proof. For the rest of this proof only, let ∆n =NR∆n. The chain complex E B
∫
n∈∆MapCh

Z(∆n,Cn)
is isomorphic to the equalizer

(109) eq

∏
[n]∈∆

MapCh
Z(∆n,Cn)⇒

∏
f :[m]→[n]

MapCh
Z(∆m,Cn)

 .
It is equipped with the usual differential of mapping chain complexes, namely dE : Ek → Ek−1
is the map

(110) dE(ϕ) = dC• ◦ϕ − (−1)kϕ ◦ d∆• .

Thus for k ∈Z, an element ϕ ∈ Ek consists of a family of degree k maps ϕn : ∆n→ Cn, such that
for every map f : [m]→ [n] the following diagram commutes

(111)
∆m Cm

∆n Cn

f

ϕm

ϕn

Cf

and this makes sense, as pre or post-composing a degree k map of chain complexes with a chain
map is a degree k map. This is equivalent to having a commutative diagram of the form

(112)
∆0 ∆1 ∆2 . . .

C0 C1 C2 . . .

ϕ0 ϕ1 ϕ2

where we have hidden the codegeneracy maps for clarity. For each n ≥ 0, a degree k map
ϕn : ∆n→ Cn is equivalently the data of an element xn in degree k + n in Cn, corresponding to
the top non-degenerate n-simplex ιn ∈ (∆n)n, along with an element xn ◦ f in degree k +m for
every map f : [m]→ [n]. However, the diagram commuting implies that xn◦f = Cf xm. In other
words, the data of the {xn}n≥0 completely determine the whole diagram. Thus for k ∈ Z, there
is a bijection Ek �

(
totZC

)
k
�
∏
q−p=kC

p,q. Furthermore their differentials agree, thus defining

an isomorphism E � totZC. Since
∫
n∈∆MapCh(NR[∆n],Cn) = τ≥0E and totC = τ≥0totZC, they

are isomorphic. □

Remark B.2. Let dMap and dv denote the differentials
∏
q−p=kC

p,q→
∏
q−p=k−1C

p,q defined com-
ponentwise by

dMap = (d − (−1)q−pδ), dv = (d + (−1)qδ).

The differential dv is more commonly seen for total complexes in the literature. There is an
isomorphism (totC,dMap) � (totC,dv) given as follows. We wish to find isomorphisms ψk :
(totC)k→ (totC)k making the following diagrams commute for all k ≥ 0∏

q−p=kC
p,q ∏

q−p=kC
p,q

∏
q−p=k−1C

p,q ∏
q−p=k−1C

p,q

dMap

ψk

ψk−1

dv
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namely we want an isomorphism of chain complexes. Let us define maps σp,q : Cp,q→ Cp,q by

σp,q =

 id if p ≡ 0,3 (mod 4)
−id if p ≡ 1,2 (mod 4).

Then set ψk =
∏
q−p=k σp,q. This gives the desired isomorphism19.

Let us now examine how Proposition B.1 helps us compute ∞-stack cohomology for diffe-
ological spaces. Suppose that A′ is a presheaf of chain complexes such that A = DKA′ is an
∞-stack, and X is a diffeological space. Then the 0th∞-stack cohomology of X with values in
A is given by π0Ȟ(X,A). Let us compute Ȟ(X,A).

(113)

Ȟ(X,A) = sPre(Cart)(QX,DKA′)

� sPre(Cart)


∫ n ∐

(fn−1,...,f0)

yUpn ×∆
n,DKA′


�

∫
n

∏
(fn−1,...,f0)

sSet(∆n,sPre(Cart)(yUpn ,DKA
′))

�

∫
n

∏
(fn−1,...,f0)

sSet(∆n, [DKA′](Upn))

�

∫
n

∏
(fn−1,...,f0)

Ch(NR∆n,A′(Upn))

�

∫
n

∏
(fn−1,...,f0)

DKMapCh(NR∆n,A′(Upn))

� DK
∫
n

MapCh(NR∆n,
∏

(fn−1,...,f0)

A′(Upn))

� DK totA′(QX),

where the last isomorphism follows from Proposition B.1, and the third to last isomorphism
follows from Lemma 5.7. Thus we have proven the following.

Proposition B.3. Given a presheaf of chain complexes A′ such that A = DKA′ is an ∞-stack,
and X a diffeological space, the 0th∞-stack cohomology of X with values in A is given by

Ȟ0
∞(X,A) �H0(totA′(QX)).

Propositon B.3 allows us to get a component level description of ∞-stack cohomology of
diffeological spaces with values in the ∞-stacks of interest, see Section 6. Let us now use
Proposition B.1 to prove the following well-known folklore result.

Proposition B.4. Let C be a cosimplicial chain complex, then

(114) holimn∈∆C
n ≃ totC,

where we are computing the homotopy limit in the category of chain complexes equipped with
the projective model structure.

Proof. First let us show that every cosimplicial chain complex C is Reedy fibrant. For more
information about Reedy categories, see [Rie14, Section 14]. We wish to show that the match-
ing map Cn→MnC is a projective fibration. To do so, it will be sufficient to show that if A is
a cosimplicial vector space, then the canonical map s : An →MnA, defined by the same limit
above, is surjective. This is sufficient because limits of chain complexes are computed degree-
wise, and a map is a projective fibration if and only if it is surjective in all positive degrees.

19We obtained the maps σp,q by carefully following the procedure outlined in [Ric].
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We follow the proof20 given in [Jar, Lemma 21.1]. Let Dn denote the category whose objects
are surjective maps [n]

σ−→ [k] where k = n − 1 or k = n − 2, and whose morphisms are either
identities or coface maps sj : [n− 1]→ [n− 2]

[n]

[n− 1] [n− 2]sj

si sjsi

Then by [Hir09, Proposition 15.2.6],

(115) MnA � lim
σ :[n]↠[k]

Ak .

Now let us label every object of Dn by either si : [n] → [n − 1] or σ : [n] → [n − 2], and every
non-identity morphism by a pair (si , sj ). Since sjsi = sisj+1 for every i ≤ j, the objects sjsi : [n]→
[n−2] and sisj+1 : [n]→ [n−2] are the same, but the morphisms (si , sj ) and (sj+1, si) are not. We
can write the above limit as the equalizer (where we are not denoting the identity maps)

(116) MnA � eq

∏
si

An−1 ×
∏
σ

An−2 α
⇒
β

∏
(si ,sj )

An−2

 ,
where α is defined in component (si , sj ) by α(a,a′) = sjai , and β is defined in component (si , sj )
by β(a,a′) = a′

sjsi
. Since β in component (si , sj ) and in component (sj+1, si) are equal a′

sjsi
=

a′
sisj+1 for i ≤ j, this equalizer will be isomorphic to the subspace of (An−1)n of those tuples
a = (a0, . . . , an−1) where sjai = siaj+1 for i ≥ j. The matching map s : An→MnA is then given by
s(a0, . . . , an−1) = (s0a0, . . . , s

n−1an−1).
Now let us prove by induction that s is surjective. In the base case, note that (0, . . . ,0) =

s(0, . . . ,0). Now suppose that every element b ∈ MnA of the form b = (b0, . . . , bj−1,0, . . . ,0) is in
the image of s. We wish to show that every element of the form a = (a0, . . . , aj−1, aj ,0, . . . ,0) is in
the image of s.

First note that for i ≤ j, we have sjai = siaj+1 = si0 = 0. Thus sjdiai = disj−1ai = 0 for i < j and
sjdjaj = aj . Thus

a− s(djaj ) = (a0 − s0djaj , . . . , aj−1 − sj−1djaj ,0, . . . ,0).

By the induction hypothesis, there exists a c ∈ An such that s(c) = a − s(djaj ). Therefore a =
s(c+ djaj ).

So we have shown that s : An → MnA is surjective. This implies that s : Cn → MnC is a
projective fibration for all cosimplicial chain complexes C. This implies that all cosimplicial
chain complexes are Reedy fibrant.

Since C is Reedy fibrant, [Hir09, Theorem 19.8.7] implies that the totalization of C computes
the homotopy limit, i.e. holim∆C ≃

∫
n∈∆MapCh(NR[∆n],Cn). Thus Proposition B.1 proves that

holim∆C ≃ totC. □

Remark B.5. During the writing of this paper, the preprint [Ara23] came out, which also proves
Proposition B.4 in greater generality. However since the scope of our argument is much smaller,
we believe our proof of Proposition B.4 is simpler and more direct.

Appendix C. Proof of Theorem 7.1

In this section we prove Theorem 7.1. We will need several technical preliminary results.

20Note that the proof given in that note has several typographical errors, which is why we chose to reproduce a
full proof here.
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Given a chain complex C, consider the chain complex C∆1
� MapCh(NR∆1,C). This is the

chain complex with C∆1

n = Cn ⊕Cn ⊕Cn+1 for n > 0, and with differential

dn : Cn ⊕Cn ⊕Cn+1→ Cn−1 ⊕Cn−1 ⊕Cn
given by dn(x,y,z) = (dx,dy,dz − (−1)n[−x+ y]).

This means that for k = 0, we have

C∆1

0 � ker
(
C0 ⊕C0 ⊕C1

d0−−→ 0⊕ 0⊕C0

)
where d0(x,y,z) = (0,0,dz+ x − y). There is an isomorphism C∆1

0 � C0 ⊕C1 given by the maps

σ : C∆1

0 → C0 ⊕C1, σ (x,y,z) = (x,z)

τ : C0 ⊕C1→ C∆1

0 , τ(x,z) = (x,x+ dz,z).

Thus the differential d : C∆1

1 → C∆1

0 is isomorphic to the map α = σ ◦ d1,

α : C1 ⊕C1 ⊕C2→ C0 ⊕C1, α(x,y,z) = σd1(x,y,z) = σ (dx,dy,dz − x+ y) = (dx,dz − x+ y).

The map π : C∆1 → C ⊕C is given in degree k > 0 by

(117) πk : Ck ⊕Ck ⊕Ck+1→ Ck ⊕Ck , πk(x,y,z) = (x,y).

It is given in degree k = 0 by

(118) π0 : C0 ⊕C1→ C0 ⊕C0, π0(x,z) = (x,x+ dz).

Let us now state a few model categorical results that we will need for the proof of Theorem
7.1.

Lemma C.1 ([Hir09, Corollary 13.3.8]). Let C be a right proper model category and let

A B

C Dg

f
⌟

be a pullback square in C such that at least one of maps f or g is a fibration. Then the above
square is a homotopy pullback square.

Lemma C.2 ([Hir09, Proposition 13.3.15]). Let C be a right proper model category, and suppose
we have a commutative diagram of the form

(119)
A B C

D E F

and suppose that the right hand square is a homotopy pullback square. Then the left hand
square is a homotopy pullback square if and only if the outer rectangle is a homotopy pullback
square.

Lemma C.3 ([Sch13, Corollary 2.3.10]). Let C be a model category, and suppose X,Y ,Z are
fibrant objects in C and f : X→ Z and g : Y → Z are maps between them. Then the homotopy
pullback of f and g is naturally weak equivalent to the actual pullback

(120)
X ×hZ Y ZI

X ×Y Z ×Z
f ×g

⌟

where ZI → Z ×Z is a path object for Z.
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Lemma C.4 ([Hir09, Proposition 3.3.16]). Suppose f : X→ Y is a map of∞-stacks on Cart that
is an projective fibration. Then it is a fibration in the Čech model structure.

Definition C.5. If X,Y ,Z are∞-stacks on Cart, and the commutative diagram

X Y

∗ Zz

f

is a homotopy pullback square, where ∗B ∆0, then we say that the sequence of maps

X→ Y → Z

is a homotopy fiber sequence, and we call X the homotopy fiber of f at z, which we sometimes
denote by hofib(f ).

Lemma C.6. Let X → Y → Z be a homotopy fiber sequence of pointed ∞-stacks on Cart, and
where the morphisms preserve the points. Then the resulting sequence

Ȟ0
∞(W,X)

f
−→ Ȟ0

∞(W,Y )
g
−→ Ȟ0

∞(W,Z),

is exact.21

Proof. This follows from the fact that RȞ(−,−) preserves homotopy pullbacks in its second
factor, so a homotopy fiber sequence of∞-stacks produces a homotopy fiber sequence of spaces

RȞ(W,X)→RȞ(W,Y )→RȞ(W,Z)

and the long exact sequence of homotopy groups gives exactness for π0. □

Proposition C.7. Suppose that we have a commutative square

(121)
A B

C D

g

f

h

k

of presheaves of chain complexes over Cart such that

(122)
DKA DKB

DKC DKD

DKg

DKf

DKh

DKh

is a commutative diagram of∞-stacks. If (121) is a homotopy pullback square in the projective
model structure on ChPre(Cart), then (122) is a homotopy pullback square in Ȟ.

Proof. If (121) is a homotopy pullback diagram, then A is weak equivalent to the actual pull-
back C ×hD B of Lemma C.3. Since both of these presheaves of chain complexes are projective
fibrant, and DK is right Quillen, then DKA is weak equivalent to DK(C ×hD B) � DKC ×hDKD DKB.
Therefore DKA is a homotopy pullback of (122) in H. Then by Proposition 3.5, it is a homotopy
pullback in Ȟ. □

Now that we have all the technical tools we need, we restate Theorem 7.1 for the convenience
of the reader.

21Exact in the sense that each set Ȟ0
∞(W,A) is pointed by the constant map ∗ to the point of A, and the image of

f is equal to the set of x ∈ Ȟ0
∞(W,Y ) such that g(x) = ∗, which we call the kernel of g.
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Theorem 7.1. For every k ≥ 1, there exists a commutative diagram of∞-stacks of the following
form

(123)

∗ BkRδ ∗ ∗

∗ Bk∇R Ωk+1
cl Ωk+1

BkR BkΩ1
cl Ω1≤•≤k+1

∗ Bk+1
R
δ Bk+1

∇ R

1 2

4

3

5

6 7

furthermore every commutative square in this diagram is a homotopy pullback square in Ȟ.

Lemma C.8. The pasted square [4|5], given as follows

(124)
Bk∇R Ωk+1

BkR Ω1≤•≤k+1

is a homotopy pullback square in Ȟ.

Proof. Let us analyze this part of the diagram as presheaves of chain complexes.
(125)

[R→Ω1→Ω2→ ·· · →Ωk] [0→ 0→ ·· · →Ωk+1
cl ] [0→ 0→ 0→ ·· · →Ωk+1]

[R→ 0→ 0→ ·· · → 0] [Ω1→Ω2→ ·· · →Ωk+1
cl ] [Ω1→Ω2→ ·· · →Ωk →Ωk+1]

where the upper horizontal left hand map is 0 except in degree 0 where it applies the differ-
ential d. The lower horizontal left hand map is d in degree k + 1 and 0 elsewhere. The rest of
the maps are either degreewise inclusions or identity maps.

Let us show that the outer rectangle is a homotopy pullback diagram. Note that neither the
bottom map nor the right hand map is objectwise surjective in positive degree, namely they
are not fibrations in ChPre(Cart). However we can use Lemma C.3 to compute the homotopy
pullback of BkR→Ω1≤•≤k+1←Ωk+1. Namely it is given as the actual (objectwise) pullback of
the diagram

(126)
(Ω1≤•≤k+1)∆

1

BkR⊕Ωk+1 Ω1≤•≤k+1 ⊕Ω1≤•≤k+1

Now (Ω1≤•≤k+1)∆
1

is given by the presheaf of chain complexes

[Ω1 ⊕Ω1→Ω2 ⊕Ω2 ⊕Ω1→ ·· · →Ωk ⊕Ωk ⊕Ωk−1→Ωk+1 ⊕Ωk]

which projects to Ω1≤•≤k+1⊕Ω1≤•≤k+1. From this we obtain the following diagram the following
diagram of presheaves of chain complexes
(127)

[R→Ω1→Ω2→ ·· · →Ωk] [Ω1 ⊕Ω1→Ω2 ⊕Ω2 ⊕Ω1→ ·· · →Ωk ⊕Ωk ⊕Ωk−1→Ωk+1 ⊕Ωk]

[R→ 0→ ·· · → 0→Ωk+1] [Ω1 ⊕Ω1→Ω2 ⊕Ω2→ ·· · →Ωk ⊕Ωk →Ωk+1 ⊕Ωk+1]

π
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and this is an actual pullback square. To see this, note that pullbacks of chain complexes are
computed degreewise. For degrees k > 0, it is clearly a pullback. In degree 0 we are trying to
show that Ωk is isomorphic to the pullback of

(128)
Ωk+1 ⊕Ωk

0⊕Ωk+1 Ωk+1 ⊕Ωk+1

π0

0⊕1
Ωk+1

but from (118), we know that π0(x,z) = (x,x + dz). For every cartesian space U , the pullback is
the set of triples (w,x,z) ∈Ωk+1(U )⊕Ωk+1(U )⊕Ωk(U ) such that x = 0 and w = dz. This set is of
course in bijection with Ωk(U ). Thus [4|5] is a homotopy pullback square. □

Lemma C.9. The square [5], given by

(129)

Ωk+1
cl Ωk+1

BkΩ1
cl Ω1≤•≤k+1

is a homotopy pullback square.

Proof. Consider the commutative diagram of presheaves of chain complexes

(130)

[0→ 0→ ·· · →Ωk+1
cl ] [0→ 0→ ·· · →Ωk+1]

[Ω1 d−→Ω2→ ·· · →Ωk+1
cl ] [Ω1 d−→Ω2→ ·· · →Ωk→Ωk+1]

Now the above diagram is an actual pullback, and the bottom map is objectwise a surjection
in positive degrees, thus it is a fibration of presheaves of chain complexes, and therefore by
Lemma C.1 the diagram (130) is a homotopy pullback. □

Corollary C.10. The square [4] is a homotopy pullback square.

Proof. By Lemma C.8, [4|5] is a homotopy pullback square. By Lemma C.9, [5] is a homotopy
pullback square. Thus by Lemma C.2, [4] is a homotopy pullback square. □

Lemma C.11. The square [6]

(131)
BkR BkΩ1

cl

∗ Bk+1
R
δ

is a homotopy pullback square.

Proof. This proof is very similar as the proof of Lemma C.8. We take the actual pullback of the
diagram

(132)

(Bk+1
R
δ)∆

1

0⊕BkΩ1
cl (Bk+1

R
δ ⊕Bk+1

R
δ)
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which by similar reasoning to the paragraph after (128) is precisely
(133)

[0→Ω1 ⊕R
d1−−→Ω2 ⊕Ω1 d2−−→ . . .

dk−2−−−−→Ωk−1 ⊕Ωk−2 α−→Ωk−1] [R⊕R→Ω1 ⊕Ω1 ⊕R→ ·· · →Ωk
cl ⊕Ω

k−1]

[0→Ω1→ ·· · →Ωk
cl] [R⊕R→Ω1 ⊕Ω1→ ·· · →Ωk

cl ⊕Ω
k
cl]

π

where di(a,b) = (da,db − (−1)ia) for 1 ≤ i ≤ k − 2, and α(a,b) = db + a. Now there is an obvious
map

(134) [0→R→ ·· · → 0]→ [0→Ω1 ⊕R
d1−−→Ω2 ⊕Ω1 d2−−→ . . .

dk−2−−−→Ωk−1 ⊕Ωk−2 α−→Ωk−1]

that is an isomorphism on cohomology. Indeed α is surjective, and the kernel of di : Ωi⊕Ωi−1→
Ωi+1 ⊕Ωi is the set of pairs (a,b) where a = (−1)idb, and these are all in the image of di−1. □

Lemma C.12. The square [7]

(135)

BkΩ1
cl Ω1≤•≤k+1

Bk+1
R
δ Bk+1

∇ R

is a homotopy pullback square.

Proof. As presheaves of chain complexes we have

(136)

[0→Ω1→Ω2→ ·· · →Ωk+1
cl ] [0→Ω1→Ω2→ ·· · →Ωk→Ωk+1]

[R→Ω1→Ω2→ ·· · →Ωk+1
cl ] [R→Ω1→Ω2→ ·· · →Ωk→Ωk+1]

which is an actual pullback, and the bottom horizontal map is a fibration, thus by Lemma C.1,
[7] is a homotopy pullback. □

Lemma C.13. The pasted square [2
4 ],

(137)
BkRδ ∗

BkR BkΩ1
cl

is a homotopy pullback square.

Proof. We use the same proof technique as in Lemma C.8, namely we will compute the actual
pullback of the diagram

(138)

(BkΩ1
cl)

∆1

BkR⊕ 0 BkΩ1
cl ⊕BkΩ1

cl

The actual pullback we obtain is given by
(139)

[R→Ω1→Ω2→ ·· · →Ωk
cl] [Ω1 ⊕Ω1→Ω2 ⊕Ω2 ⊕Ω1→ ·· · →Ωk

cl ⊕Ω
k
cl ⊕Ω

k−1→ 0⊕Ωk
cl]

[R→ 0→ ·· · → 0→ 0] [Ω1 ⊕Ω1→Ω2 ⊕Ω2→ ·· · →Ωk
cl ⊕Ω

k
cl→ 0]

π

which is similar to the computation (127). Thus [2
4 ] is a homotopy pullback square. □
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Corollary C.14. The square [2] is a homotopy pullback square.

Proof. By Corollary C.10, Lemma C.13 and Lemma C.2. □

Lemma C.15. The square [3] is a homotopy pullback square.

Proof. As a diagram of presheaves of chain complexes

(140)
[0→Ω1→ ·· · →Ωk] [R→Ω1→ ·· · →Ωk]

[0→ 0→ ·· · → 0] [R→ 0→ ·· · → 0]

it is an actual pullback, and the right hand map is a fibration. □

Lemma C.16. The square [1] is a homotopy pullback square.

Proof. As a diagram of presheaves of chain complexes

(141)

[0→ ·· · → 0] [R→ ·· · →Ωk
cl]

[0→ ·· · → 0] [R→ ·· · →Ωk]

it is an actual pullback, and the right hand map is a fibration. □

Thus we have proven Theorem 7.1.
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