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CATEGORICAL MODELS FOR PATH SPACES

EMILIO MINICHIELLO, MANUEL RIVERA, AND MAHMOUD ZEINALIAN

Abstract. We establish an explicit comparison between two constructions in homotopy
theory: the left adjoint of the homotopy coherent nerve functor, also known as the rigid-
ification functor, and the Kan loop groupoid functor. This is achieved by considering
localizations of the rigidification functor, unraveling a construction of Hinich, and using
a sequence of operators originally introduced by Szczarba in 1961. As a result, we obtain
several combinatorial models for the path category of a simplicial set. We then pass to
the chain-level and describe a model for the path category, now considered as a category
enriched over differential graded (dg) coalgebras, in terms of a suitable algebraic chain
model for the underlying simplicial set. This is achieved through a version of the cobar
functor inspired by Lazarev and Holstein’s categorical Koszul duality. As a consequence,
we obtain a conceptual explanation of a result of Franz stating that there is a natural
dg bialgebra quasi-isomorphism from the extended cobar construction on the chains of a
reduced simplicial set to the chains on its Kan loop group.
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1. Introduction

Any topological space Y may be regarded as a category P(Y ) enriched over topological
spaces whose morphisms are invertible up to homotopy. The objects of P(Y ) are the points
of Y and given any two points a, b ∈ Y the corresponding mapping space is the set

P(Y )(a, b) = {γ : [0, r]→ X : r ∈ R≥0, γ is continuous, and γ(0) = a, γ(r) = b}

equipped with the compact-open topology. Composition is defined by concatenation of
paths and the identity morphisms are given by constant paths with r = 0. This gives rise
to a functor

P : Top→ CatTop

from the category of topological spaces to the category of topological categories (categories
enriched over the monoidal category of topological spaces) called the path category functor.
For any point b ∈ Y , the topological monoid of endomorphisms P(Y )(b, b) is Moore’s model
for the based loop space of Y at b. We also have a simplicial version of P defined as the
composition

P : sSet
|·|
−→ Top

P
−→ CatTop

Sing
−−→ CatsSet.

Here | · | : sSet → Top denotes the geometric realization functor from the category of
simplicial sets to the category of topological spaces and Sing : CatTop → CatsSet the functor
from topological categories to simplicial categories (categories enriched over the monoidal
category of simplicial sets) that applies the singular complex functor at the level of mapping
spaces.

The functor P sends weak homotopy equivalences of simplicial sets to weak equivalences of
simplicial categories. Recall that a map of simplicial categories is called a weak equivalence
if it induces an equivalence on homotopy categories and a weak homotopy equivalence on
all simplicial sets of morphisms. Furthermore, any simplicial set X may be recovered, up to
weak homotopy equivalence, by applying a homotopy coherent version of the nerve functor
to P(X).

In the present article, we study and compare different models for the functor P. We
introduce some notation before stating our main results. Denote by F : Quiv → Cat the
functor from the category of quivers to the category of categories that sends a quiver (also
known as a reflexive directed graph) to the category freely generated by it. We also have a
functor j : Quiv → sSet, that sends a quiver to its associated 1-skeletal simplicial set. The
right adjoint of j is the functor Q : sSet → Quiv that sends a simplicial set to the quiver
determined by its 1-skeleton. Denote by i : Gpd → Cat the fully faithful embedding from
groupoids to categories and by L : Cat→ Gpd its left adjoint, called the localization functor.
We are interested in solutions to the following.

Problem 1. Construct a functor F : sSet→ CatsSet that fits into a commutative diagram

(1.1)

Quiv Cat

sSet CatsSet

j

i◦L◦F

τ

F

and such that, for any simplicial set X, the simplicial categories F(X) and P(X) are nat-
urally weakly equivalent. The vertical right functor τ sends an ordinary category to the
simplicial category obtained by considering sets of morphisms as discrete simplicial sets.
The commutativity of diagram 1.1 says that F inverts (strictly) every 1-simplex.
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Our motivation for finding solutions to the above problem is to obtain small and tractable
combinatorial and algebraic models for the path category that are useful in geometric con-
texts. The main idea is to use ordered sequences of simplices to construct higher dimensional
mapping spaces while localizing the smallest set of morphisms necessary to obtain the correct
homotopy type. This may be achieved through different combinatorial constructions.

In [DK84], Dwyer and Kan studied a classifying space functor

W : CatsSet → sSet.

Denote the left adjoint of W by

G : sSet→ CatsSet.

Dwyer and Kan were mainly interested in the composition

GKan = L ◦G : sSet→ GpdsSet

where L : CatsSet → GpdsSet is the functor from simplicial categories to simplicial groupoids
obtained by applying the ordinary localization functor L at each simplicial degree. The
restriction of GKan to the category of 0-reduced simplicial sets is known in the literature
as the Kan loop group functor. Dwyer and Kan show that the functor GKan together with
its right adjoint W relate two models for the homotopy theory of homotopy types. We will
denote by

G : sSet→ CatsSet

the composition of functors G = ι ◦ GKan, where ι : GpdsSet → CatsSet is the inclusion
functor.

Another related, but combinatorially different construction is the functor

C : sSet→ CatsSet,

called the rigidification functor, which is left adjoint to Cordier’s homotopy coherent nerve
functor

N : CatsSet → sSet.

The rigidification functor has been studied in detail in [Lur09] and [DS11], where the ad-
junction (C,N) is used to relate two models for the homotopy theory of ∞-categories. In
the present article, we consider the following two localizations of C.

(1) Localize all 0-morphisms to obtain a functor

Ĉ : sSet→ CatsSet

given by

X 7→ C(X)[C(X1)−1],

where X1 denotes the 1-skeleton of X.
(2) Localize all morphisms to obtain a functor

C : sSet→ CatsSet

given by

X 7→ ι(L(C(X))) = ι(C(X)[C(X)−1]).

It follows from the fact that C(X) is a cofibrant simplicial category that the natural map

µX : Ĉ(X)→ C(X)

is a weak equivalence of simplicial categories Our first result provides an explicit comparison
between C and GKan.



4 E. MINICHIELLO, M. RIVERA, AND M. ZEINALIAN

Theorem 1.1. There is a natural transformation of functors Sz : C =⇒ G inducing a weak

equivalence of simplicial groupoids

LSzX : LC(X)
≃
−→ GKan(X)

for any simplicial set X. Furthermore, the three functors Ĉ, C, and G are all solutions to
Problem 1.

The notation “Sz” stands for Szczarba, since the natural transformation Sz : C =⇒ G is

constructed using a sequence of simplicial operators reminiscent of a construction of Szczarba
while studying twisted cartesian products. The description of the natural transformation
Sz in terms of Szczarba’s simplicial operators gives explicit formulas for a construction
originally proposed by Hinich in [Hin07]. In particular, one may deduce from the above
theorem that the geometric realization of the Kan loop group of a 0-reduced simplicial set
X is weakly equivalent to the based loop space of |X| as a topological monoid. A different
proof of this fact may be found in [Ber95].

We now turn to the problem of constructing and comparing algebraic models for the
path category. Let R be a fixed commutative ring and write ⊗R = ⊗. The dg R-module
of normalized simplicial chains equipped with Alexander-Whitney diagonal approximation
gives rise to a lax monoidal functor

C∆
∗ : (sSet,×)→ (dgCoalg≥0

R ,⊗)

from simplicial sets to differential non-negatively graded counital coassociative coalgebras.
There is an induced functor

C∆∗ : CatsSet → Cat
dgCoalg

≥0
R

,

obtained by applying C∆
∗ on mapping spaces, where Cat

dgCoalg
≥0
R

is the category of categories

enriched over (dgCoalg≥0
R ,⊗). A map f : C→ D in Cat

dgCoalg
≥0
R

is called a quasi-equivalence,

if it induces a quasi-isomorphism between the underlying dg R-modules of morphisms and
an essentially surjective map between homotopy categories.

Following the framework for categorical Koszul duality proposed in [HL22], we define the
category cCoalgR of categorical R-coalgebras. An object of cCoalgR consists of the data

(C,∆, ∂, h)

where (C,∆) is a non-negatively graded coassociative counital R-coalgebra such that C0 =
R[PC ] is freely generated by a set of “objects” PC , ∂ : C → C is a coderivation of degree
−1, and h : C2 → R a “curvature” map measuring the failure of ∂ in squaring to zero such
that certain properties and compatibilities are satisfied. The category cCoalgR provides a
convenient setting to define a “many-object” version of the cobar functor

Ω : cCoalgR → dgCat
≥0
R ,

where dgCat
≥0
R is the category of differential non-negatively graded categories over R. Cate-

gorical coalgebras are particular examples of pointed curved coalgebras as defined in [HL22].
Any simplicial set X gives rise to a categorical coalgebra through a modified version of

the normalized chains functor

C̃∆
∗ : sSet→ cCoalgR.

One of our observations is that, for any simplicial set X, C̃∆
∗ (X) may be equipped with

additional algebraic structure that we call a B∞-coalgebra structure. A B∞-coalgebra is a
categorical coalgebra C ∈ cCoalgR equipped with coassociative coproducts

∇x,y : Ω(C)(x, y)→ Ω(C)(x, y)⊗ Ω(C)(x, y)
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for all objects x and y in Ω(C) making Ω(C) into a category enriched over the monoidal
category of dg R-coalgebras. B∞-coalgebras form a category B∞CoalgR. Thus, the cobar
construction can be regarded as a functor

Ω : B∞CoalgR → Cat
dgCoalg

≥0
R

.

The following statement, which is our second result, describes how to obtain an algebraic
model for the chains on the path category directly from the B∞-coalgebra of normalized
chains on X.

Theorem 1.2. There exists a functor C̃∗ : sSet → B∞Coalg satisfying the following prop-
erties.

(1) C̃∗ is a lift of C̃∆
∗ , i.e. there is a natural isomorphism of functors U ◦ C̃∗

∼= C̃∆
∗ ,

where U : B∞CoalgR → cCoalgR denotes the forgetful functor.

(2) There is a natural isomorphism of functors F ◦ Q ∼= S ◦Ω ◦ C̃∗, where

S : Cat
dgCoalg

≥0
R

→ Cat

applies the “set-like elements” functor at the level of morphisms.
(3) For any simplicial set X, there are natural quasi-equivalences

Ω̂(C̃∗(X))
TX−−→ C∆∗ (Ĉ(X))

C∆
∗ (ι(L(SzX))◦µX )
−−−−−−−−−−−−→ C∆∗ (G(X)),

where

Ω̂ : B∞Coalg→ Cat
dgCoalg

≥0
R

is defined on any C ∈ B∞Coalg by formally inverting all set-like elements in each
dg coalgebra Ω(C)(x, y) for all objects x, y ∈ Ω(C).

The proof of Theorem 1.2 uses a cubical interpretation of the dg category Ω(C̃∆
∗ (X)).

The map TX is then induced by a triangulation map that sends an n-dimensional cube to
a formal sum of n-dimensional simplices indexed by the n! permutations in the symmetric
group of n elements.

Taking into account higher structure on the chains of a simiplicial set allows us to achieve
two goals: 1) extract functorially a set of morphisms to formally invert them, and 2) model
the chains on the path category not only as a dg category but as a category enriched over
dg coalgebras. This results in an algebraic model for the path category of an arbitrary
simplicial set. More precisely, Theorems 1.1 and 1.2 together imply the following.

Theorem 1.3. For any simplicial set X ∈ sSet, the dg coalgebra enriched categories

Ω̂(C̃∗(X)) and C∆∗ (P(X)) are naturally quasi-equivalent.

Our argument also provides a conceptual explanation for the main results of [HT10] and

[Fra21]. When X is a 0-reduced simplicial set, the category Ω̂(C̃∗(X)) has a single object
and consequently can be interpreted as a dg bialgebra. Its underlying dg algebra is iso-

morphic to the extended cobar construction Ω̂C∆
∗ (X) introduced in [HT10]. The coalgebra

structure on Ω̂C∆
∗ (X) is determined by the homotopy Gerstenhaber coalgebra structure of

C∆
∗ (X), as discussed in [Fra21]. The following corollary is then a direct consequence of

Theorem 1.2.

Corollary 1.4. For any 0-reduced simplicial set X, there are natural quasi-isomorphisms
of dg bialgebras

Ω̂(C̃∗(X)) ∼= Ω̂(C∆
∗ (X))

TX−−→ C∗(Ĉ(X))
C∗(ι(L(SzX))◦µX )
−−−−−−−−−−−−→ C∗(G

Kan(X)),

whose composition coincides with the chain level "Szczarba map" described in section 1.4 of
[HT10].
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Note, however, that Ω̂ is now functorial with respect to the initial algebraic chain-level
data, in contrast to the extended cobar construction of [HT10] which is functorial with
respect to space-level data (or functorial after equipping the initial algebraic data with a
choice of basis for the degree 1 part of the underlying coalgebra).

1.1. Organization of the paper. This paper has five sections and an appendix. In section
2, we recall preliminaries regarding quivers and simplicial sets as well as different adjunctions
involving forgetful, free, inclusion and localization functors. In section 3, we construct a
natural transformation between the functors C and G in terms of a sequence of operators
introduced by Szczarba, in a different context, in [Szc61]. This involves defining these
functors as well as giving an interpretation in terms of the framework of necklaces. In
section 4, we prove that different localizations of C are weakly equivalent to the Kan loop
groupoid functor. The end result is that we obtain different explicit combinatorial models
(described in terms of simplicial categories) for the path category of a space, as summarized
in Theorem 4.10. In section 5, we turn to the algebraic problem of modelling the path
category, now considered as a category enriched over dg coalgebras, directly from chain-
level algebraic structure naturally associated to a simplicial set. This involves introducing
the notion of a B∞-coalgebra and a localized version of the many-object cobar construction,
building upon [HL22]. Finally, in the appendix we discuss different Quillen equivalences of
model categories that are used in section 4.

1.2. Acknowledgments. MR was supported by NSF Grant 210554 and the Karen EDGE
Fellowship. The authors would like to thank Clemens Berger, Kathryn Hess, Julian Holstein,
Ralph Kaufmann, Andrey Lazarev, Yang Mo, and Jim Stasheff for fruitful conversations.
We’d also like to thank Kensuke Arawaka for finding typos that lead to correcting the
formula for the natural transformation Sz constructed in section 3.

2. Quivers, simplicial sets, and localization

2.1. Quivers and simplicial sets. A quiver (also known as a reflexive directed graph)
consists of a pair of sets Q1, Q0 equipped with maps t, s : Q1 → Q0 called the source and
target maps and 1 : Q0 → Q1, called the unit map such that for any q ∈ Q0, (t ◦ 1)(q) =
(s◦1)(q) = q. A morphism of quivers f : Q→ Q′ consists on two maps of sets f0 : Q0 → Q′

0

and f1 : Q1 → Q′
1 that preserve the unit, source and target maps. Quivers form a category

which we denote by Quiv.
A simplicial set is a functor X : ∆op → Set, where ∆ is the category of finite or-

dinals with order-preserving maps and Set is the category of sets. Simplicial sets form a
category sSet with natural transformations as morphisms. For any simplicial set X, we
write Xn = X([n]) ∈ Set. The data of a simplicial set X is equivalent to a sequence of sets
{X0,X1,X2, ...} with face maps di = di,n : Xn → Xn−1 for i = 0, ..., n and degeneracy maps
sj = sj,n : Xn → Xn+1 for j = 0, ..., n satisfying the simplicial identities. The category
of simplicial sets becomes a monoidal category (sSet,×) when equipped with the level-wise
Cartesian product of sets.

Quivers may be thought of as simplicial sets with no non-degenerate simplices of dimen-
sion 2 or above. More precisely, there is a fully faithful functor

j : Quiv→ sSet

sending a quiver Q to the simplicial set j(Q) defined by j(Q)0 = Q0, j(Q)1 = Q1, with the
two face maps d0, d1 : j(Q)1 → j(Q)0 given by the source and target maps, and adjoining
degeneracies formally.

We describe several free-forgetful adjunctions that will be used throughout the article.

Definition 2.1. Consider the functor U : Cat → Quiv, where Cat is the category of small
categories, given by forgetting the composition rule. The functor U has a left adjoint
F : Quiv → Cat. For any quiver Q, F (Q) is a category, where Obj(F (Q)) = Q0 and where
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Mor(F (Q)) is the set of finite formal compositions of elements of Q1. We say that F (Q) is
the free category generated by the quiver Q and that U(C) is the underlying quiver of
the category C. We obtain an adjunction

F : Quiv ⇄ Cat : U.

Remark 2.2. We follow the convention of writing the left adjoints on the left hand side
with corresponding arrow at the top and going from left to right, just as above.

Definition 2.3. Let sSet∗ =
(
∆0 ↓ sSet

)
be the category of pointed simplicial sets.

Denote by sMon the category of simplicial monoids, i.e. simplicial sets M equipped with
an associative and unital map of simplicial sets M ×M →M .

We now define another free-forgetful adjunction

F ∗ : sSet∗ ⇄ sMon : U∗.

Given (X, b) ∈ sSet∗, let F ∗(X)n denote the free monoid generated by the set Xn with
unit sn0 (b), where s0 denotes the 0-th degeneracy map. Given a simplicial monoid M , U∗(M)
is the simplicial set obtained by forgetting the product structure, and whose basepoint is
given by the unit e ∈M0.

Definition 2.4. We call a set X equipped with a function X
deg
−−→ Z≥0 a graded set.

Graded sets form a category Set≥0 with set maps preserving the grading. There is an
adjunction

F∆ : Set≥0
⇄ sSet : U∆,

where U∆ forgets the simplicial face and degeneracy maps, and if X is a graded set, then
F∆(X) is the simplicial set with (F∆(X))k = deg−1(k) with faces and degeneracies freely
adjoined. In other words,

(2.1) F∆(X) :=
∐

k≥0

∐

x∈deg−1(k)

∆k

We call F∆(X) the free simplicial set generated by the graded set X.

Let X be a graded singleton set X = {x} with degx = k. Then x corresponds to the

unique nondegenerate k-simplex ∆k x
−→ F∆(X) ∼= ∆k. We define the poset

(2.2) 〈x〉k := {dk1x ≤ dk−1
1 d0x ≤ · · · ≤ d11d

k−1
0 x ≤ dk0x},

so that we have natural isomorphisms 〈x〉k ∼= [k] and N〈x〉k ∼= F∆{x} ∼= ∆k, where N is
the nerve functor.

Remark 2.5. The elements of 〈x〉k are the vertices of the simplex x ordered from 0 to k.

Definition 2.6. A graded quiver is a quiver Q equipped with a function Q1
deg
−−→ Z≥0

called the grading. Graded quivers form a category Quiv≥0 with morphisms of quivers that
preserve the gradings.

Let CatsSet denote the category of small categories enriched over (sSet,×). This is equiv-
alently the category of simplicial objects in Cat whose simplicial operators are the identity
on objects. We refer to these objects as simplicial categories. If C is a simplicial category,
then C(x, y) is a simplicial set for all objects x, y ∈ Obj(C), and thus we refer to the set
C(x, y)k as the set of k-morphisms with source x and target y.

There is a forgetful functor

U : CatsSet → Quiv≥0

that forgets about composition and the simplicial structure of the morphisms. The forgetful
functor has a left adjoint

F : Quiv≥0 → CatsSet.
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For any graded quiver Q, F(Q) is the simplicial category having Q0 as objects and for
each x, y ∈ Q0, the simplicial set of morphisms F(Q)(x, y) ∈ sSet is defined as follows.
First consider F∆(Q1(x, y)), the free simplicial set generated by the graded set Q1(x, y),
for each x, y ∈ Q0, where Q1(x, y) = {e ∈ Q1 : s(e) = x, t(e) = y}. Then define FQ(x, y)n
to consist of all finite formal compositions ek · . . . · e1 where ei ∈ F∆(Q1(s(ei), t(ei))n and
t(ei) = s(ei+1) for all i = 1, . . . , n. The face maps dj : F(Q)(x, y)n → F(Q)(x, y)n−1 are
defined by dj(ek · . . . · e1) = dj(ek) · . . . · dj(e1) and degeneracies are defined similarly. The
simplicial category F(Q) is called the free simplicial category generated by the graded
quiver Q.

2.2. Localization.

Definition 2.7. Let L : Cat→ Gpd be the classical (Gabriel-Zisman) localization functor
from categories to groupoids. Given any category C, L(C) is the groupoid whose morphisms
are obtained by adding formal inverses to all morphisms in C. The localization functor is
the left adjoint of an adjunction

L : Cat ⇄ Gpd : i

where i is the fully faithful inclusion from groupoids into categories.
The above adjunction induces a new adjunction

L : CatsSet ⇄ GpdsSet : ι

between simplicial categories and simplicial groupoids. For any simplicial category C, we
define L(C)n = L(Cn) together with the obvious face and degeneracy maps on morphisms. In
other words, we apply the localization functor L degree-wise. We also call L the localization
functor. For any simplicial category C the unit of the adjunction gives us a natural map of
simplicial categories C → ιL(C), which we often write as C → L(C)

For any map i : W −→ C of simplicial categories, we denote by C[W−1] the (ordinary)
pushout of the maps i : W → C and W → L(W) in CatsSet as given by the following
diagram:

(2.3)

W L(W)

C C[W−1].

i
p

The following is now straightforward to verify.

Proposition 2.8. The adjunction L : CatsSet,B ⇄ GpdsSet,DK : ι is a Quillen adjunction
when these categories are equipped with the Bergner model structure (Theorem A.9) and
Dwyer-Kan model structure (Theorem A.7), respectively.

By restricting the functors L and ι to categories with one object we obtain an induced
adjunction L : sMon ⇄ sGrp : ι. Denote by sSet∗KQ the model category given by the slice

model structure on (∆0 ↓ sSet) = sSet∗ induced by the Kan-Quillen model structure on
sSet.

Proposition 2.9. The adjunction LF ∗ : sSet∗KQ ⇄ sGrpK : U∗ι is a Quillen adjunction.

Proof. This is immediate since the right adjoint U∗ι preserves fibrations and acyclic fibra-
tions (in fact, it preserves all weak equivalences). �

3. The Szczarba map

In this section we describe a natural transformation Sz : C =⇒ G, where

C : sSet→ CatsSet
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is the rigidification functor, the left adjoint of Cordier’s homotopy coherent nerve functor
N : CatsSet → sSet ([Cor82], [Lur09], [DS11]) and

G : sSet→ CatsSet

is the left adjoint of the classifying space functor W : CatsSet → sSet [DK84]. The lo-
calization L ◦ G is known as the Kan loop groupoid functor. The natural transformation
Sz : C =⇒ G is described in terms of a sequence of simplicial operators that are reminiscent

of those introduced by Szczarba [Szc61].

3.1. The Kan loop groupoid functor.

Remark 3.1. The following definition comes from [Hin07, Section 2.6].

Definition 3.2. Let G(∆n) = F(Qn) denote the free simplicial category generated by the
graded quiver Qn with Qn

0 = {0, ..., n} and where the graded set Qn
1 has exactly one element

gi in degree n− i with s(gi) = i− 1, t(gi) = i for i = 1, . . . , n.
It follows that every simplex in G(∆n)(i, j) is a formal composition of the elements gk,

their faces, and their degeneracies. In other words, using the notation introduced in 2.2,

G(∆n)(i, j) ∼= ∆n−j × · · · ×∆n−i−1 ∼= N(〈gj〉
n−j × · · · × 〈gi+1〉

n−i−1),

where N denotes the nerve functor. The assignment [n] 7→ G(∆n) defines a cosimplicial
simplicial category as follows.

Let di : G(∆n) → G(∆n+1) with 1 ≤ i ≤ n + 1 act on objects in the obvious way and
define it on the generators by:

(3.1) di(gj) =





gj+1 if i < j,

gi+1d0gi if i = j,

di−jgj if i > j.

Similarly let si : G(∆n)→ G(∆n−1) act on objects in the obvious way and define it on the
generators by:

(3.2) si(gj) =





si−jgj if j ≤ i

idj if j = i+ 1

gj−1 if j > i+ 1.

where idj denotes the unique (n− j)-simplex in G(∆n−1)(j, j) ∼= ∆0.
The category CatsSet is cocomplete, thus we can define the functor

G : sSet→ CatsSet

on any simplicial set X by the formula

G(X) := colim
∆n→X

G(∆n) ∈ CatsSet.

Definition 3.3. Define the functor

W : CatsSet → sSet

on any simplicial category C by letting W (C) ∈ sSet be the simplicial set having as n-
simplices the set W (C)n = CatsSet(G(∆n), C) and face and degeneracy maps induced by
the cosimplicial structure of G(∆•).

Hence we have an adjunction

(3.3) G : sSet ⇄ CatsSet : W.
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Definition 3.4. We now recall the definition of the Kan loop groupoid functor GKan :
sSet → GpdsSet. If X is a simplicial set, then for each integer n ≥ 0, define GKan(X)n
to be the free groupoid with object set Obj(GKan(X)n) = {x |x ∈ X0} and morphism

set Mor(GKan(X)n) generated by elements y : s(y) → t(y), where y ∈ Xn+1 and s =
(d1)

n+1, t = d0(d2)
n with relation s0z = id

s(z)
for z ∈ Xn. Define face maps δi : G

Kan(X)n →

GKan(X)n−1 and degeneracy maps σi : G
Kan(X)n → GKan(X)n+1 to be the identity on

objects and on morphisms given by:

(3.4)

σix = si+1x

δix = di+1x for 1 ≤ i ≤ n

δ0x = (d0x)
−1d1x.

Definition 3.5. Let W
Kan

: GpdsSet → sSet denote the functor such that:

W
Kan

(G)0 = Obj G0

W
Kan

(G)n = {(hn−1, . . . , h0) |hk ∈ Mor Gk, t(hk) = s(hk−1)}

with face and degeneracy maps given by:

di(hn−1, . . . , h0) =





(hn−2, . . . , h0), i = 0

(di−1hn−1, . . . , hn−i−1d0hn−i, . . . , h0), 0 < i < n

(dn−1hn−1, . . . , d1h1), i = n

si(hn−1, . . . , h0) =

{
(ids(hn−1), hn−1, . . . , h0), i = 0

(si−1hn−1, . . . , s0hn−i, idt(hn−i), hn−i−1, . . . , h0), 0 < i.

Proposition 3.6. There is a natural isomorphism of functors

(3.5) GKan ∼= L ◦G,

where L denotes the localization functor, i.e. the left adjoint to the inclusion of simplicial
groupoids into simplicial categories.

Proof. Since W
Kan

and GKan are adjoint functors, as proven in [DK84], this proposition

follows by comparing the definitions of W ◦ ι and W
Kan

and taking adjoints.
For completeness, we describe the isomorphism directly. Define

η∆n : G(∆n) −→ GKan(∆n)

to be the identity on objects, and for any i ∈ [n],

η∆n : G(∆n)(i− 1, i) −→ GKan(∆n)(i− 1, i)

is determined by

(3.6) gi 7→ [i− 1 . . . n],

where [i . . . j] denotes the (j− i)-simplex in ∆n determined by the vertices {i, i+1, . . . , j} ⊆
[n]. By the universal property of the localization functor, η∆n gives rise to an isomorphism

η̃∆n : LG(∆n)→ GKan(∆n)

of simplicial groupoids for all n ≥ 0. These maps give rise to an isomorphism of cosimplicial
simplicial groupoids

η̃∆• : LG(∆•)→ GKan(∆•)

which induces a natural isomorphism L ◦G =⇒ GKan.

�
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3.2. The rigidification functor.

Definition 3.7. Given a standard n-simplex ∆n, define a simplicial category C(∆n) as
follows:

(1) ObjC(∆n) = [n] = {0, 1, . . . , n}.

(2) If i, j ∈ [n], then C(∆n)(i, j) =





∅ if i > j

N(Pi,j) ∼= (∆1)×(j−i−1) if i < j

∆0 if i = j
where N is the nerve functor and, for i < j, Pi,j is the poset whose elements are
subsets

U = {i, i0, . . . , im, j} ⊆ {i, i + 1, . . . , j − 1, j}

and U ≤ V if V ⊆ U .
(3) If i0 ≤ · · · ≤ im, then the composition

C(∆n)(im−1, im)× · · · × C(∆n)(i0, i1)→ C(∆n)(i0, im)

is induced by the map of the posets

Pim−1,im × · · · × Pi0,i1 → Pi0,im

(Um−1, . . . , U0) 7→ Um−1 ∪ · · · ∪ U0.

Each 0-morphism in C(∆n)(i, j) corresponds to a subset {i, i0, . . . , im, j} ⊂ [n] with i <
i0 < · · · < im < j. Hence, each 0-morphism can be written as a composition {im, j} × · · · ×
{i, i0} 7→ {i, i0, . . . , im, j}. Each set (C(∆n)(i, j))0 = N(Pi,j)0 has a special element {i, j},
we call 0-morphisms of this form indecomposable. It follows that any 0-morphism is a
unique composition of indecomposable 0-morphisms.

Each k-simplex in C(∆n)(p, q), where 0 ≤ k ≤ q − p− 1 is given by a sequence

{p, q} ≥ {p, i1, q} ≥ {p, i1, i2, q} ≥ · · · ≥ {p, i1, . . . , ik, q}

which we can write as the sequence (i1, . . . , ik). The empty sequence, denoted ∅ corresponds
to the indecomposable {p, q}. Furthermore, the assignment [n] 7→ C(∆n) defines a cosim-
plicial object in simplicial categories with coface and codegeneracy maps which act in the
obvious way on objects and on simplices by

(3.7)

dj : C(∆n)→ C(∆n+1)

dj(i1, . . . , ik) = (dj(i1), . . . , d
j(ik))

sj : C(∆n)→ C(∆n−1)

sj(i1, . . . , ik) = (sj(i1), . . . , s
j(ik))).

For any simplicial set X ∈ sSet, define

C(X) = colim
σ:∆n→X

C(∆n).

This construction gives rise to a functor C : sSet→ CatsSet called the rigidification func-

tor.

Remark 3.8. The functor C given above is precisely [Lur09, Definition 1.1.5.1] but with
opposite underlying posets Pi,j , and agrees with the definition given in [Hin07, Section 2.2].

Definition 3.9. The homotopy coherent nerve N : CatsSet → sSet is given by

(3.8) (NC)n := CatsSet(C(∆
n), C),

on any C ∈ CatsSet. This provides us with an adjunction

(3.9) C : sSet ⇄ CatsSet : N,

which is actually a Quillen equivalence when sSet is equipped with Joyal’s model structure
and CatsSet with Bergner’s model structure, see Theorem A.10 in the Appendix.
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3.3. Rigidification in terms of necklaces. We recall a description of the mapping spaces
C(X)(x, y) given in [DS11] in terms of the framework of necklaces.

Definition 3.10. A necklace is simplicial set of the form

N = ∆n1 ∨ ... ∨∆nk

obtained from an ordered sequence of standard simplices with ni > 0 for i = 1, ..., k,
by identifying the final vertex of one to the first vertex of its successor. The standard
simplex ∆ni in the sequence is called the i-th bead of the necklace N . Define dim(N) :=
n1 + ...+ nk − k. We consider ∆0 as a necklace of dimension 0.

Any necklace N has a natural ordering on its vertices given by the ordering of the beads
of N and the ordering of the vertices on each bead. Denote by αN and ωN the first and
last vertices of N . Necklaces are the objects of a category Nec with morphisms being maps
of simplicial sets f : N → N ′ such that f(αN ) = αN ′ and f(ωN) = ωN ′ . For X ∈ sSet

and x, y ∈ X0 denote by (Nec ↓ X)x,y the full subcategory of the over category (Nec ↓ X)
consisting of those maps f : N → X such that f(αN ) = x and f(ωN ) = y.

The category Nec of necklaces has a non-symmetric monoidal structure

∨ : Nec × Nec→ Nec

given by concatenating necklaces. The unit object in the monoidal structure is ∆0.
The morphisms of Nec are generated through the monoidal structure by the following

four types of morphisms:

(1) ∂j : ∆
n−1 →֒ ∆n for j = 1, . . . , n− 1,

(2) ∆[j],[n−j] : ∆
j ∨∆n−j →֒ ∆n for j = 1, . . . , n− 1,

(3) sj : ∆
n+1

։ ∆n for j = 0, . . . , n and n > 0, and
(4) s0 : ∆

1
։ ∆0.

The mapping spaces C(X)(x, y) are obtained by gluing simplicial cubes labeled by neck-
laces in X from x to y.

Proposition 3.11 ([DS11]). For any X ∈ sSet and x, y ∈ X, there are natural isomor-
phisms of simplicial sets

C(X)(x, y) ∼= colim
(f :N→X)∈(Nec↓X)x,y

C(N)(αN , ωN ) ∼= colim
(f :N→X)∈(Nec↓X)x,y

(∆1)×dim(N).

Furthermore, the composition C(X)(y, z) × C(x, y)→ C(X)(x, z) is induced by the concate-
nation of necklaces ∨ : Nec × Nec→ Nec.

3.4. The natural transformation Sz. In this section we will define a map Sz : C(∆•)→
G(∆•) of cosimplicial simplicial categories.

Given non-negative integers p, q and ℓ, let

Sℓ
p,q = {i = (i1, . . . , iℓ) ∈ {p+ 1, . . . , q − 1}×ℓ : ir 6= is, for r 6= s}.

For ℓ = 0, we set S0
p,q = {∅}, and we call ∅ the empty sequence.

For a fixed n ≥ 1, let 0 ≤ p < q ≤ n and 0 ≤ ℓ ≤ q − p − 1. Consider the set
nd(C(∆n)(p, q)ℓ) of non-degenerate ℓ-simplices of C(∆n)(p, q). There is an obvious bijection
nd(C(∆n)(p, q)ℓ) ∼= Sℓ

p,q. Thus we implicitly identify sequences (i1, . . . , iℓ) as above with
non-degenerate ℓ-simplices.

Now if i = (i1, . . . , iℓ−1) is a non-degenerate (ℓ− 1)-simplex, and iℓ ∈ {p+1, . . . , q − 1} \
{i1, . . . , iℓ−1}, then let ω(i1,...,iℓ−1)(iℓ) denote the largest integer in {p, i1, . . . , iℓ−1, q} such

that ωi(iℓ) < iℓ.
Given a sequence i = (i1, . . . , iℓ−1, iℓ), let i′ = (i1, . . . , iℓ−1) and i(k) = (i1, . . . , iℓ−k) for

1 ≤ k ≤ ℓ and 1 ≤ ℓ ≤ q − p − 1, where i(ℓ) = ∅. Now for a fixed n ≥ 1, 0 ≤ p < q ≤ n,
p+ 1 ≤ k ≤ q and 0 ≤ ℓ ≤ q − p− 1, define a function

αk : Sℓ
p,q → {0, . . . , n− k}
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as follows. If ℓ = 0, so that i = ∅, then set αk(∅) = q − k. For nonempty i = (i1, . . . , iℓ),
define αk(i) inductively by

(3.10) αk(i) =

{
iℓ − k, ωi′(iℓ) < k ≤ iℓ

αk(i
′), k ≤ ωi′(iℓ) or iℓ < k.

Construction 3.12. We construct a map of simplicial categories

Sz∆n : C(∆n)→ G(∆n)

as follows. On objects, Sz is the identity map. For any nondegenerate ℓ-simplex in
C(∆n)(p, q)ℓ, determined by an ordered sequence i = (i1, . . . , iℓ), let Sz∆n(i) be the ℓ-
simplex in

G(∆n)(p, q) ∼= N(〈gq〉
n−q)× · · · ×N(〈g

n−(p+1)
p+1 〉)

given by

(3.11) Sz∆n(i) = (Ei,q gq, Ei,q−1 gq−1, . . . , Ei,p+2 gp+2, Ei,p+1 gp+1) ,

where the Ei,k for p + 1 ≤ k ≤ q are simplicial operators which we now define. First, given
any simplicial operator τ = si0 . . . siadj0 . . . djb , we write τ ′ = si0+1 . . . sia+1dj0+1 . . . djb+1

and denote the iteration of this operation by τ ′′ = (τ ′)′ = si0+2 . . . djb+2, and more generally

τ (m) = si0+m . . . djb+m. Define the operators Ei,k by induction on ℓ, the length of i. For the
empty sequence we define

E∅,k = dn−q
1 dq−k

0 ,

and for i 6= ∅ we define

(3.12) Ei,k =

{
s0 Ei′,k if αk(i

′) = αk(i)

E ′i′,k s
αk(i)+1
0 d

αk(i)
0 if αk(i) < αk(i

′).

Note that by definition it is not possible for αk(i) > αk(i
′).

Remark 3.13. These simplicial operators Ei,k are reminiscent of the operators appearing
in [Szc61, Theorem 2.1].

Proposition 3.14. Construction 3.12 determines a map of cosimplicial simplicial categories
Sz∆• : C(∆•) −→ G(∆•) and consequently a natural transformation

Sz : C =⇒ G.

Proof. Recall the adjunction τ1 ⊣ N : sSet ⇄ Cat, given by the ordinary nerve and fun-
damental category, is strong monoidal and induces an adjunction τCat1 ⊣ NCat : CatsSet ⇄
CatCat [RV22, Digression 1.4.2]. Furthermore, NCat is fully faithful. We show Sz∆n =
NCat(Hin) for a map Hin : PC(∆

n) → PG(∆
n) between poset enriched categories, from

which it will follow that Sz∆n is compatible with compositions and consequently defines a
map of simplicial categories.

Let PC(∆
n) be the underlying poset enriched category of C(∆n). Namely, PC(∆

n)(i, j) =
Pn
i,j if i < j, as given in Definiton 3.7. Similarly, let PG(∆

n) be the underlying poset enriched

category of G(∆n). Namely,

PG(∆
n)(i, j) = 〈gj〉

n−j × · · · × 〈gi+1〉
n−(i+1)

for i < j, and PG(∆
n)(j, j) = {idj}, the trivial poset, as given in Definition 3.2. We have

NCat(PC(∆
n)) = C(∆n) and NCat(PG(∆

n)) = G(∆n).
Define Hin : PC(∆

n)→ PG(∆
n) to be the identity on objects. The objects in each poset

PC(∆
n)(p, q) can be written uniquely as a composition of indecomposable 0-morphisms.
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Therefore it is sufficient to define Hin : PC(∆
n)(p, q) → PG(∆

n)(p, q) on indecomposable
0-morphisms. Given the unique indecomposable {p, q} ∈ PC(∆

n)(p, q), let

(3.13) Hin({p, q}) = (dn−q
1 gq, d

n−q
1 d0 gq−1, . . . , d

n−q
1 dq−p−1

0 gp+1).
1

We may extend this to a map on all morphisms by requiring it to be compatible with
compositions. The map Hin preserves the poset structures. To verify this it is sufficient to
note

Hin({p, q}) ≥ Hin({p, k, q}) = Hin({k, q})Hin({p, k})

for p < k < q. This follows from

Hin({p, k, q}) = (dn−q
1 gq, . . . , d

n−q
1 d

q−(k+1)
0 gk+1, d

n−k
1 gk, . . . , d

n−k
1 d

k−(p+1)
0 gp+1),

together with the fact that the poset structure PG(∆
n)(p, q) is given by the product of

posets and every component of Hin({p, k, q}) is less than the corresponding component of
Hin({p, q}). This defines a map of cosimplicial poset-enriched categories Hin : PC(∆

•) →
PG(∆

•), which after applying NCat we obtain a map of cosimplicial simplicial categories.
From a straightforward computation, one can check that Sz ∼= NCat(Hin). �

Example 3.15. Consider the 2-simplex in C(∆3)(0, 3)2 given by

{0, 3} ≥ {0, 2, 3} ≥ {0, 1, 2, 3}.

This simplex corresponds to the sequence i = (2, 1). So with n = 3, p = 0, q = 3, we
compute

α3(∅) = 0, α2(∅) = 1, α1(∅) = 2

ω∅(2) = 0, α3(2) = 0, α2(2) = 0, α1(2) = 1

(3.14) ω(2)(1) = 0, α3(2, 1) = 0, α2(2, 1) = 0, α1(2, 1) = 0.

With this we can then compute

(3.15)

Sz∆3(i) = (E(2,1),3 g3, E(2,1),2 g2, E(2,1),1 g1)

= (s0E(2),3 g3, s0E(2),2 g2, E
′
(2),1s0g1)

= (s20E∅,3 g3, s0E
′
∅,2s0g2, E

′′
∅,1s

2
1d1s0g1)

= (s20g3, s0d1s0g2, d
2
2s

2
1g1)

= (s20g3, s0g2, g1).

A similar computation gives

Sz∆3(1, 2) = (s20g3, s1g2, s0d1g1).

We include a diagram illustrating the map Sz∆3 : C(∆3)(0, 3)→ G(∆3)(0, 3).

{0, 3}

{0, 1, 3}{0, 1, 2, 3}

{0, 2, 3}

(
g3, d1g2, d

2
1g1

)

(g3, d1g2, d1d0g1)

(
g3, d1g2, d

2
0g1

)

(g3, d0g2, d1d0g1)

(
g3, d0g2, d

2
1g1

)

(
g3, d0g2, d

2
0g1

)

1this map appears as ψ in [Hin07, Section 2.6.1]



CATEGORICAL MODELS FOR PATH SPACES 15

The diagram on the left is an illustration of the nondegenerate simplices in C(∆3)(0, 3) ∼=
∆1 ×∆1 and similarly on the right for G(∆3)(0, 3) ∼= ∆0 ×∆1 ×∆2. The red subdiagram
on the right shows the image of the Szczarba map.

4. Simplicial models for the path category

The goal of this section is to prove Theorem 1.1 from the introduction. In particular,
we will prove that for any simplicial set there are natural weak equivalences of simplicial
categories

Ĉ(X) −→ C(X)
SzX−−−→ G(X).

We then show that these three simplicial categories are connected via natural weak equiva-
lences to the the path category P(X).

4.1. Comparing the classifying space and homotopy coherent nerve functors. The
main technical result in this section is the following.

Proposition 4.1. For any simplicial groupoid C ∈ GpdsSet, the natural transformation

C
Sz
=⇒ G induces a weak homotopy equivalence of simplicial sets Wι(C)→ Nι(C).

Proof. Without loss of generality, we may assume C has one object, i.e. C is a a simplicial

group. We will show that the natural transformation C
Sz
=⇒ G induces an isomorphism of

groups πn(Wι(C)) → πn(Nι(C)) for all n ≥ 1. Denote Sn = ∆n/∂∆n ∈ sSet0 and let
π : ∆n → Sn denote the natural quotient map.

We have natural isomorphisms of sets

(4.1)
πn(Wι(C)) ∼= sSet0KQ[S

n,W
Kan

(C)] ∼= sGrpKQ[G
Kan(Sn), C]

∼= sGrpKQ[LF
∗(Sn−1), C] ∼= sSet∗KQ[S

n−1, U∗ι(C)],

which we now explain (for information on the notation see Appendix A). The first isomor-
phism follows from the definition of simplicial homotopy groups of Kan complexes. The sec-

ond isomorphism follows from the Quillen equivalence GKan : sSet0KQ ⇄ sGrpKQ : W
Kan

.

The third isomorphism is obtained by noting that GKan(Sn) is the free simplicial group
generated by the simplicial set Sn−1. In fact, the isomorphism GKan(Sn) → LF (Sn−1) is
determined by ιn 7→ ιn−1. The last isomorphism follows from Proposition 2.9.

Similarly, we have natural isomorphisms of sets
(4.2)
πn(Nι(C)) ∼= sSet0KQ[S

n,Nι(C)] ∼= sSetKQ[S
n,Nι(C)] ∼= sSetJ [S

n,Nι(C)]

∼= sGrpK [LC(Sn), C] ∼= sGrpK [LF ∗
(
(S1)∧(n−1)

)
, C)] ∼= sSet∗KQ[(S

1)∧(n−1), U∗ι(C)],

which we now explain. The first isomorphism follows from the definition of simplicial ho-
motopy groups of Kan complexes. The second isomorphism follows since sSet0KQ →֒ sSetKQ

induces a fully faithful functor on homotopy categories [GJ09, Chapter V, Remark 6.5].
The third isomorphism follows because Nι(C) is a Kan complex. The fourth isomorphism
follows from the composition of Quillen adjunctions

sSetJ
C

⇄
N

CatsSet,B
L
⇄
ι
GpdsSet,DK .

The fifth isomorphism is given by the description of the simplicial sets of morphisms of
C(Sn) in terms of necklaces, namely,

C(Sn)(∗, ∗) = colim
(f :N→Sn)∈(Nec↓Sn)

(∆1)×dim(N) ∼= colim
(p:∆n∨...∨∆n→Sn)∈(Nec↓Sn)

(∆1)×k(n−1),
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where the second colimit of simplicial sets is taken over the full subcategory of Nec ↓ Sn on
the set of objects

{(p : N → Sn)|N = ∆n1 ∨ ... ∨∆nk , for some k ≥ 1, ni = n for all i, and p = π ∨ ... ∨ π}.

From this description of C(Sn), it follows that C(Sn) ∼= F
(
(S1)∧(n−1)

)
, so C(Sn) is freely

generated by the (n − 1)! non-degenerate (n− 1)-dimensional simplices of (S1)∧(n−1). The
last isomorphism follows from Proposition 2.9.

Under the identifications above, the map πn(Wι(C))→ πn(Nι(C)) becomes a map

sSet∗KQ[S
n−1, U∗ι(C)]→ sSet∗KQ[(S

1)∧(n−1), U∗ι(C)].

We claim this is an isomorphism. In fact, this follows by considering the diagram

(4.3)

C(∆n) G(∆n)

C(Sn) G(Sn)

Sz∆n

SzSn

C(π) G(π)

and noting that F ∗((S1)∧(n−1) ∼= C(Sn)
SzSn

−−−→ G(Sn) ∼= F ∗(Sn−1) is induced by the map

(S1)∧(n−1) → Sn−1 which collapses all nondegenerate (n − 1)-simplices except for the one
labelled γ(σ) = (0, . . . , 0), that is sent to ιn−1 in Sn−1. This map is a weak equivalence and

consequently it induces an isomorphism sSet∗KQ[S
n−1, U∗ι(C)]→ sSet∗KQ[(S

1)∧(n−1), U∗ι(C)],
as desired. �

4.2. Comparing the localized rigidification and Kan loop groupoid functors. We
can now deduce the first part of Theorem 1.1.

Corollary 4.2. For any simplicial set X the map LSzX : LC(X) → GKan(X) is a weak
equivalence of simplicial groupoids.

Proof. By Corollary A.13

LC : sSetKQ ⇄ GpdsSet,DK : Nι

defines a Quillen equivalence. By Proposition 4.1, the natural transformation LSz : LC =⇒

GKan induces a weak equivalence between their right Quillen adjoints. Hence, LSzX :
LC(X) =⇒ GKan(X) is a natural weak equivalence of simplicial groupoids for all X. �

Fix a fibrant replacement functor J : sSet→ sSet in the Joyal model structure. For any
simplicial set X denote by X1 its 1-skeleton. Fix a simplicial set J1 such that there is a
cofibration ∆1 → J1 which is a weak homotopy equivalence and such that the homotopy
category of J1 is a groupoid. Then for any simplicial set X there is a natural cofibration

X1 → colim
∆1→X1

J1.

The above cofibration is a weak homotopy equivalence which we may think of as a thickening
of X1 in which every 1-simplex has an inverse up to homotopy.

Denote the pushout of the cofibrations X1 → X and X1 → colim
∆1→X1

J1 by

K1(X) =

(
colim
∆1→X1

J1

)∐

X1

X.

Once we fix J1 and a trivial cofibration (in the Kan-Quillen model structure) ∆1 → J1, this
construction gives rise to a functor

K1 : sSet→ sSet.

A fundamental principle of the theory of quasi-categories is that fibrant replacement of a
simplicial set X in the Kan-Quillen model structure can be thought of as first "inverting"
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the 1-skeleton of X up to homotopy and then fibrant replacing the resulting simplicial set
in the Joyal model structure.

Proposition 4.3. The composition of natural maps of simplicial sets

X → K1(X)→ J (K1(X))

is a cofibration and a weak homotopy equivalence. Moreover, J (K1(X)) is fibrant in the
Kan-Quillen model structure, i.e. J (K1(X)) is a Kan complex.

Proof. Since X = X1 ∐X1 X is a pushout of cofibrations between cofibrant objects, this
presents a homotopy pushout in the Kan-Quillen model structure. Hence the weak homotopy
equivalence X1 → colim

∆1→X1
J1 induces a weak homotopy equivalence X → K1(X). Since every

Joyal equivalence is a weak homotopy equivalence it follows that K1(X) → J (K1(X)) is
a weak homotopy equivalence. By Theorem A.4, the quasi-category J (K1(X)) is a Kan
complex since the homotopy category, which is isomorphic to the homotopy category of
K1(X), is a groupoid. �

Denote K(X) = J (K1(X)) so that X 7→ K(X) is a functorial Kan replacement.

Corollary 4.4. The simplicial categories C(K1(X)) and C(K(X)) are naturally Bergner
weak equivalent.

Proof. Since K1(X)
≃
−→ J (K1(X)) = K(X) is a Joyal equivalence and C sends Joyal equiv-

alences to Bergner weak equivalences of simplicial categories the result follows. �

For simplicity from now on we will denote

C = ι ◦ L ◦ C : sSet→ CatsSet

and
G = ι ◦ L ◦G : sSet→ CatsSet.

We now argue that C(K(X)) can be modeled, up to weak equivalence of simplicial cate-

gories, by localizing the image of C(X1) in C(X). Define Ĉ : sSet→ CatsSet to be the functor
given by

Ĉ(X) = C(X)[C(X1)−1].

Proposition 4.5. For any X ∈ sSet, the natural inclusion of simplicial categories Ĉ(X)→
C(X) is a weak equivalence.

Proof. This follows from Propositions 9.5 and 9.6 of [DK80]. �

Corollary 4.6. The natural transformation Sz : C =⇒ G induces a weak equivalence of

simplicial categories ι(L(SzX)) : Ĉ(X)→ G(X).

Proof. This follows from Corollary 4.2 and Proposition 4.5. �

Proposition 4.7. The simplicial categories Ĉ(X) and C(K1(X)) are naturally weak equiv-
alent.

Proof. Since C is a left adjoint, it preserves pushouts so we have a natural isomorphism

C(K1(X)) ∼= C(K1(X
1))

∐

C(X1)

C(X).

We claim that the natural maps of simplicial categories

C(K1(X
1)) −→ C(K1(X

1))←− C(X1)

are all weak equivalences. Since C(K1(X
1) is a cofibrant simplicial category with the prop-

erty that the homotopy category is a groupoid, Proposition 9.5 of [DK80] implies that the
first map is a weak equivalence of simplicial categories.
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By Corollary A.13, L ◦ C : sSetKQ → GpdsSet,DK preserves weak equivalences between

cofibrant objects so LC(X1) → LC(K1(X
1)) is a weak equivalence. Since ι : GpdsSet,DK →

CatsSet,B preserves weak equivalences, it follows that C(X1)→ C(K1(X
1)) is a weak equiva-

lence of simplicial categories. Hence, we have natural induced weak equivalences of simplicial
categories

C(K1(X)) ∼= C(K1(X
1))

∐

C(X1)

C(X)
≃
−→ C(K1(X

1))
∐

C(X1)

C(X)
≃
←− C(X1)

∐

C(X1)

C(X) ∼= Ĉ(X).

�

Corollary 4.8. Let f : X → Y be a map of simplicial sets. The following are equivalent:

(1) f : X → Y is a weak homotopy equivalence

(2) Ĉ(f) : Ĉ(X)→ Ĉ(Y ) is a weak equivalence of simplicial categories
(3) LC(f) : LC(X)→ LC(Y ) is a weak equivalence of simplicial groupoids.

Proof. The equivalence between (2) and (3) follows from Proposition 4.5. The equivalence
between (1) and (3) follows from Corollary A.13 since every object of sSetKQ is cofibrant
and every object of GpdsSet,DK is fibrant. �

4.3. Comparing the localized rigidification and the path category functors. Given
any simplicial set X, denote by P(X) = SingP|X| the simplicial category defined by applying
the functor Sing : Top → sSet to the morphisms spaces of P|X|. Let N : CatsSet → sSet

be the classical simplicial nerve functor defined by applying the ordinary nerve level-wise to
obtain a bisimplicial set and then taking the diagonal.

Proposition 4.9. The simplicial categories P(X) and C(X) are naturally weak equivalent.

Proof. Let C be a fibrant groupoid, i.e. a fibrant simplicial category such that the homotopy
category is a groupoid. We claim that for any such C there are natural weak homotopy
equivalences of Kan complexes

(4.4) N (C)
≃
−→W (C)

≃
−→ N(C).

Note that any such C is naturally weak equivalent to a simplicial groupoid. In fact, let
Q : CatsSet → CatsSet be a cofibrant replacement functor in the Bergner model structure and
note there are natural weak equivalences of fibrant simplicial categories

C
≃
←− Q(C)

≃
−→ ιLQ(C).

The first map is a weak equivalence by definition and the second by Proposition 9.5 of
[DK80]. The three functors N , W, and N send weak equivalences between fibrant groupoids
to weak homotopy equivalences between Kan complexes, hence we may assume (without loss
of generality) that C is a simplicial groupoid.

When C is a simplicial groupoid, the weak homotopy equivalence W (C)→ N(C) is given
by the map Sz, as proven in Proposition 4.1. A natural weak homotopy equivalenceN (C)→
W (C) is constructed in A.5.1 of [Hin01].

We now argue that N (P(X)) and X are naturally weak homotopy equivalent. With-
out loss of generality we may assume X is connected. Then the space |NP(X)| is weak
homotopy equivalent to BΩ|X|, where B is the classifying space functor (or geometric bar
construction) constructed in [May75] and Ω|X| is the (Moore) based loop space of |X|. By
Lemma 15.4 of [May75], there is a natural weak homotopy equivalence BΩ|X| → |X|. Hence,
N (P(X)) and X are naturally weak homotopy equivalent. Consequently, N(P(X)) and X
are naturally weak homotopy equivalent. By Corollary A.13, C(X) and P(X) are naturally
weak equivalent as simplicial categories.

�
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We summarize all of the weak equivalences between the simplicial categories described
above. These are all combinatorial models for the path category of the geometric realization
of an arbitrary simplicial set, thus proving the second part of Theorem 1.1.

Theorem 4.10. For any simplicial set X, the following simplicial categories are all naturally
weakly equivalent

P(X) ≃ Ĉ(X) ≃ C(X) ≃ C(K1(X)) ≃ C(K(X)) ≃ G(X).

5. Algebraic models for the path category

The goal of this section is to prove Theorem 1.2 in the introduction. The main construc-

tion, the functor denoted by Ω̂, takes a graded coalgebra equipped with extra structure and
produces a category enriched over the monoidal category of differential graded (dg) coalge-

bras. When Ω̂ is applied to a suitable model for the chains on a simplicial set, it produces
a model for its path category. Throughout this section we fix a commutative ring R. We
often consider R as a dg R-module concentrated in degree 0.

5.1. Categorical coalgebras. We describe a notion of coalgebras equipped with further
structure to which one may naturally associate a dg category through a version of the cobar
construction. Categorical coalgebras are particular examples of pointed curved coalgebras, a
notion introduced in [HL22]. Similar notions are studied in [KM+22], in the setting of no
differential and no curvature considerations.

Definition 5.1. A categorical R-coalgebra consists of the data C = (C,∆, ∂, h) where

• C =
⊕∞

i=0Ci is a non-negatively graded R-module.
• ∆ : C → C⊗C is a degree 0 coassociative counital coproduct with counit ε : C → R.
• The set

PC := {p ∈ C : ∆(p) = p⊗ p, ε(p) = 1R}

of “set-like” elements in C is non-empty and

C0
∼= R[PC ].

We call the elements of PC the objects of C.
• ∂ : C → C is a linear map of degree −1 which is a graded coderivation of ∆.
• The projection map ǫ : C → C0 satisfies ǫ ◦ ∂ = 0.
• h : C → R is a linear map of degree −2 satisfying h ◦ ∂ = 0 and

∂ ◦ ∂ = (h⊗ id) ◦ (∆ −∆op)

where ∆op = t ◦∆ for t(x⊗ y) = (−1)|x||y|y ⊗ x. The right hand side of the above
equation is being considered as a map C → R ⊗ C ∼= C. The map h is called the
curvature of C. The above equation may be written as

d2(x) =
∑

(x)

h(x′)x′′ + x′h(x′′).

Remark 5.2. Note that any categorical coalgebra C has a natural C0-bicomodule structure
given by the maps

ρl : C
∆
−→ C ⊗ C

ǫ⊗idC−−−−→ C0 ⊗ C

and

ρr : C
∆
−→ C ⊗ C

idC⊗ǫ
−−−−→ C ⊗ C0.

Furthermore, the coassociativity of ∆ : C → C ⊗ C implies that ∆(C) ⊆ C�
C0

C, where

C�
C0

C := ker(ρr ⊗ idC − idC ⊗ ρl) ⊆ C ⊗ C.
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More generally, for any dg R-coalgebra C, any right dg C-comodule M , and any left dg
C-comodule N , define

M�
C
N = ker(ρr ⊗ idN − idM ⊗ ρl) ⊆M ⊗N,

where ρr : M → M ⊗ C and ρl : N → C ⊗ N are the respective coactions. This is called
the cotensor product of M and N over C. When there is no risk of confusion we write
M�N.

Remark 5.3. When R is a field, categorical coalgebras are special types of pointed curved
coalgebras as defined in [HL22]. A pointed curved coalgebra is a curved coalgebra whose
coradical is a direct sum of copies of R together with the structure of a splitting of the
coradical satisfying certain properties. In the case of categorical coalgebras, we have a
unique splitting given by the projection map ǫ : C → C0.

Morphisms of categorical coalgebras are defined as follows.

Definition 5.4. A morphism between categorical coalgebras C = (C,∆, ∂, h) and
C ′ = (C ′,∆′, ∂′, h′) consists of a pair (f0, f1) where

• f0 : (C,∆)→ (C ′,∆′) is a morphism of graded R-coalgebras,
• f1 : C → C ′

0 a C ′
0-bicomodule map such that the composition f̄1 = ε′ ◦ f1, where ε′

is the counit of C ′, is a degree −1 map satisfying

f0 ◦ ∂ = ∂′ ◦ f0 + (f̄1 ⊗ f0) ◦ (∆ −∆op)

and

h′ ◦ f0 = h+ f̄1 ◦ ∂ + (f̄1 ⊗ f̄1) ◦∆.

The composition of two morphisms of categorical coalgebras is defined by

(g0, g1) ◦ (f0, f1) = (g0 ◦ f0, g1 ◦ f0 + g0 ◦ f1).

Denote by cCoalgR the category of categorical coalgebras.

Definition 5.5. Denote by dgCat
≥0
R the category of non-negatively graded dg categories,

i.e. categories enriched over the monoidal category (Ch≥0
R ,⊗) of non-negatively graded dg R-

modules with tensor product. For short, we will call the objects in dgCat
≥0
R dg categories.

Given any dg category C denote by H0(C) the category enriched over R-modules obtained
by applying the 0-th homology functor at the level of morphisms. More precisely, H0(C) has
the same objects as C and for any two objects x, y ∈ C, H0(C)(x, y) is the 0-th homology
of the dg R-module C(x, y). The composition in H0(C) is induced by the composition in
C. A morphism of dg categories f : C → D is called a quasi-equivalence if it induces an

equivalence of categories H0(f) : H0(C)
∼=
−→ H0(D) and for any x, y ∈ C the induced map

f : C(x, y)→ D(f(x), f(y)) is a quasi-isomorphism.

Any categorical coalgebra gives rise to a dg category through the following version of the
cobar construction, which is a many object generalization of the classical cobar construction
for coaugmented coalgebras.

Definition 5.6. Define the cobar functor

Ω : cCoalgR → dgCat
≥0
R

as follows. Given any C = (C,∆, ∂, h) ∈ cCoalgR, the objects of Ω(C) are the elements of
the set PC .

Any element x ∈ PC determines a map ix : R → C0 = R[PC ] given by ix(1R) = x. The
map ix gives rise to a C0-bicomodule structure on R with C0-coaction maps

R ∼= R⊗R
ix⊗idR−−−−→ C0 ⊗R
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and

R ∼= R⊗R
idR⊗ix
−−−−→ R⊗ C0.

We denote this C0-bicomodule by R[x].
Write C = C̄ ⊕ C0 and denote by s−1C̄ the graded R-module obtained by applying

the shift by −1 functor to the graded R-module C̄. We have degree −1 induced maps
∂̄ : s−1C̄ → s−1C̄, ∆̄ : s−1C̄ → s−1C̄⊗ s−1C̄, and h̄ : s−1C̄ → C0, where h̄ is defined as the
composition

s−1C̄
s+1

−−→ C̄
ρr
−→ C ⊗ C0

h⊗id
−−−→ R⊗ C0

∼= C0.

For any two x, y ∈ PC define a non-negatively graded R-module by

Ω(C)(x, y) =
∞⊕

n=0

R[x]�(s−1C̄)�n
�R[y],

where (s−1C̄)�n denotes the n-fold cotensor product of the C0-bicomodule s−1C̄ with itself.
We define (s−1C̄)�0 = C0. The differential

D : Ω(C)(x, y)n → Ω(C)(x, y)n−1

is determined by

D = h̄+ ∂̄ + ∆̄.

An straightforward computation yields D ◦ D = 0, see Lemma 3.18 in [HL22]. The
composition in Ω(C) is given by concatenation of monomials. This construction is functorial
with respect to morphisms of categorical coalgebras, see Lemma 3.19 in [HL22].

Remark 5.7. The cobar functor defined above is part of a more general construction
connecting pointed curved coalgebras and dg categories [HL22]. When R is a field, this con-
struction gives rise to a Quillen equivalence of model categories extending the corresponding
result for conilpotent curved coalgebras and dg algebras.

5.2. Normalized chains as a categorical coalgebra. Denote by (dgCoalg≥0
R ,⊗) the

monoidal category of non-negatively graded dg coassociative counital R-coalgebras. For
short, we will call the objects of dgCoalg≥0

R dg coalgebras.

Given any simplicial set X, denote by (N∆
∗ (X), ∂) the dg R-module of normalized sim-

plicial chains. The Alexander-Whitney coproduct, given on any simplex σ ∈ Xn by

∆(σ) =
n∑

i=0

σ(0, ..., i) ⊗ σ(i, ..., n),

induces a coassociative coproduct

∆ : N∆
∗ (X)→ N∆

∗ (X)⊗N∆
∗ (X)

of degree 0. In the above formula, σ(0, ..., i) and σ(i, ..., n) denote the first i-th and last
(n− i)-th faces of σ, respectively. This construction gives rise to a functor

C∆
∗ : sSet→ dgCoalg

≥0
R

given by

C∆
∗ (X) = (N∆

∗ (X), ∂,∆).

For any two simplicial sets X and Y , the natural Eilenberg-Zilber shuffle map

EZX,Y : N∆
∗ (X)⊗N∆

∗ (Y )→ N∆
∗ (X × Y )

is a map of dg coalgebras and consequently makes C∆
∗ into a lax monoidal functor, see 17.6

in [EM66].
The projection map ǫ : N∆

∗ (X) → N∆
0 (X) does not satisfy ǫ ◦ ∂ = 0. However, the

differential ∂ may be modified to obtain a categorical coalgebra as follows
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Definition 5.8. Given any simplicial set X ∈ sSet define a categorical coalgebra C̃∆
∗ (X) ∈

cCoalgR as follows. The underlying graded R-module of C̃∆
∗ (X) is just the normalized chains

N∆
∗ (X) given by N∆

n (X) = R[Xn]/D(Xn), where D(Xn) ⊆ R[Xn] is the sub R-module
generated by degenerate n-simplices.

Let e : R[X1] → R be the linear map sending degenerate 1-simplices to 0 ∈ R and non-
degenerate 1-simplices to 1 ∈ R. The map e induces a linear map ẽ : N∆

1 (X) → R. Define
a new differential

∂̃ : N∆
∗ (X)→ N∆

∗−1(X)

by

∂̃ = ∂ − (id⊗ ẽ− ẽ⊗ id) ◦∆.

The map ∂̃ is a coderivation of ∆ and the projection map ǫ : N∆
∗ (X) → N∆

0 (X) now

satisfies ǫ ◦ ∂̃ = 0. Finally, define h : N∆
2 (X)→ R by

h = (ẽ⊗ ẽ) ◦∆+ ẽ ◦ ∂

A routine check yields that

C̃∆
∗ (X) = (N∆

∗ (X), ∂̃,∆, h)

defines an object in cCoalgR. Furthermore, this construction gives rise to a functor

C̃∆
∗ : sSet→ cCoalgR.

5.3. The cobar functor, necklaces, and cubes. The cobar functor from categorical coal-
gebras to dg categories formalizes algebraically a combinatorial construction that associates
to any simplicial set X a higher category Π(X). The objects of Π(X) are the vertices of X
and the mapping spaces Π(X)(x, y) are described in terms of necklaces inside X starting
at x and ending at y. In this section, we define the functor Π, which may be regarded as
a cubical version of C, and explain how it relates to the cobar functor. We build upon the
notions introduced in section 3.3.

Definition 5.9. A necklical set is a functor Necop → Set, i.e. a presheaf of sets over
the category of necklaces. Let nSet be the category whose objects are necklical sets and
morphisms are natural transformations. For example, any necklace N ∈ Nec gives rise to a
necklical set Y(N) = HomNec(_, N), defining a Yoneda embedding functor

Y : Nec→ nSet.

The monoidal structure on Nec induces a (non-symmetric) monoidal structure on nSet which
we also denote by

∨ : nSet× nSet→ nSet.

A small category enriched over the monoidal category (nSet,∨) is called a necklical cate-

gory. Denote by CatnSet the category of necklical categories.

Construction 5.10. We define a functor

Π : sSet→ CatnSet

as follows. Given any X ∈ sSet, the set objects of Π(X) is defined to be X0, the vertices of
X. Given any two x, y ∈ X0 define a necklical set of morphisms

Π(X)(x, y) = colim
(f :N→X)∈(Nec↓X)x,y

Y(N).

Composition is then induced by the monoidal structure ∨ : Nec × Nec → Nec. This con-
struction is clearly functorial with respect to maps of simplicial sets.

The idea behind the construction is very natural: the mapping spaces Π(X)(x, y) are
obtained by gluing “cells” Y(N) ∈ nSet corresponding to neckalces N in X starting at x and
ending at y. Composition is then given by concatenating necklaces. Each Y(N) may be
interpreted as a cube as we now explain using the framework of cubical sets with connections.
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Definition 5.11. Let [1] = {0 → 1} be the category with two objects and a single non-
identity morphism between them. Denote by [1]n the Cartesian product of n copies of [1].
We write [1]0 for the category with one object and one morphism. Define a category �

whose objects are the categories {[1]0, [1]1, [1]2, ...} and morphisms are generated by the
following three types of functors:

• cubical co-face functors δǫj,n : [1]n → [1]n+1, where j = 0, 1, ..., n + 1, and ǫ ∈ {0, 1},
defined by

δǫj,n(t1, ..., tn) = (t1, ..., tj−1, ǫ, tj , ..., tn),

• cubical co-degeneracy functors εj,n : [1]n → [1]n−1, where j = 1, ..., n, defined by

εj,n(t1, ..., tn) = (t1, ..., tj−1, tj+1, ..., tn), and

• cubical co-connection functors γj,n : [1]n → [1]n−1, where j = 1, ..., n − 1, n ≥ 2,
defined by

γj,n(t1, ..., tn) = (t1, ..., tj−1,max(tj , tj+1), tj+2, ..., tn).

The category � is called the cube category with connections and a presheaf K : �op →
Set is called a cubical set with connections. Denote by �

n ∈ cSet the cubical set with
connections corepresented by [1]n, i.e.

�
n = Hom�(_, [1]n).

The cube category becomes a monoidal category when equipped with [1]n × [1]m = [1]n+m.
This induces a monoidal structure ⊠ : cSet× cSet→ cSet given explicitly by

K ⊠ L = colim
σ:�n→K,τ :�m→L

�
n+m.

We now recall the definition of a strong monoidal functor

R : (Nec,∨)→ (�,×)

constructed in [RZ18]. First, let R(∆0) = [1]0. On any other necklace N ∈ Nec, define

R(N) = [1]dim(N). On morphisms, R is determined by the following rules.

(1) For any ∂j : ∆
n →֒ ∆n+1 such that 0 < j < n+ 1, define

R(∂j) : [1]
n−1 → [1]n

to be the cubical coface functor δ0j,n−1.

(2) For any ∆[j],[n+1−j] : ∆
j ∨∆n+1−j →֒ ∆n+1 such that 0 < j < n+ 1, define

R(∆[j],[n+1−j]) : [1]
n−1 → [1]n

to be the cubical coface functor δ1j,n−1.

(3) We now consider morphisms of the form sj : ∆
n+1

։ ∆n for n > 0. If j = 0 or
j = n, define

R(sj) : [1]
n → [1]n−1

to be the cubical codegeneracy functor εj,n. If 0 < j < n, define

R(sj) : [1]
n → [1]n−1

to be the cubical coconnection functor γj,n.
(4) For s0 : ∆

1
։ ∆0 define

R(s0) : [1]
0 → [1]0

to be the identity functor.
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The functor R : Nec→ � induces a strong monoidal functor on categories of presheaves

R! : (nSet,∨)→ (cSet,⊠)

given by

R!(K) = colim
Y(N)→K

Y�(R(N)) ∼= colim
Y(N)→K

�
dim(N),

where Y� : �→ cSet denotes the Yoneda embedding.
We also have a monoidal functor

T : (cSet,⊠)→ (sSet,×)

given by

T (K) = colim
�n→K

(∆1)×n.

Denote by

R : CatnSet → CatcSet

and

T : CatcSet → CatsSet

the functors obtained by applying R! and T , respectively, at the level of mapping spaces.
We now establish a relationship between Π and C.

Proposition 5.12. There is a natural isomorphism of functors

T ◦R ◦ Π ∼= C.

Proof. For any X ∈ sSet, the objects of T ◦R ◦Π(X) are, by definition, the elements of X0.
For any two x, y ∈ X0, we have the following natural isomorphisms of simplicial sets

T(R(Π(X)))(x, y) ∼= colim
f :N→X∈(Nec↓X)x,y

T (R!(Y(N))) ∼=

colim
f :N→X∈(Nec↓X)x,y

T (�dim(N)) ∼= colim
f :N→X∈(Nec↓X)x,y

(∆1)×dim(N).

Composition is induced by concatenation of necklaces. This is precisely the description of
C(X) provided by Proposition 3.11. �

Remark 5.13. The composition of functors R ◦ Π : sSet→ CatcSet was studied in [RZ18],
where it was denoted by C�c and called the cubical rigidification functor. Proposition
5.12 above is exactly Proposition 5.3 of [RZ18]. In this article, we would like to emphasize
the factorization of C�c via Π. In fact, the framework of necklaces, necklical sets, and
necklical categories uses the minimal amount of data necessary to define such a construction.
However, the use of cubes is conceptually convenient.

We recall the definition of the strong monoidal functor of normalized cubical chains

N�

∗ : (cSet,⊠)→ (Ch≥0
R ,⊗).

First define N�

k (�n) to be the quotient of the free R-module R[Hom�([1]
k, [1]n)] by the

sub-R-module generated by Ddeg
k,n ∪Dcon

k,n , where

Ddeg
k,n = {α ∈ Hom�([1]

k, [1]n)]|α = εj,n◦α
′, for some α′ ∈ Hom�([1]

k, [1]n+1), 1 ≤ j ≤ n+1}

and

Dcon
k,n = {α ∈ Hom�([1]

k, [1]n)]|α = γj,n ◦ α
′, for some α′ ∈ Hom�([1]

k, [1]n+1), 1 ≤ j ≤ n}.

The differential δ : N�

k (�
n)→ N�

k−1(�
n) is induced by the formula

δ(α) =

k∑

j=1

(−1)j(α ◦ δ1j,k−1 − α ◦ δ0j,k−1).
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Finally, for an arbitrary K ∈ cSet, define

N�

∗ (K) = colim
�n→K

N�

∗ (�n).

There is an induced functor

N�

∗ : CatcSet → dgCat
≥0
R

given by applying the strong monoidal functor N�
∗ at the level of mapping spaces. Denote

N nec
∗ = N�

∗ ◦R : CatnSet → dgCat
≥0
R .

Proposition 5.14. There are natural isomorphisms of functors

N nec
∗ ◦ Π ∼= Λ ∼= Ω ◦ C̃∆

∗ ,

where Λ : sSet → dgCat
≥0
R denotes the left adjoint of the differential graded nerve functor

Ndg : dgCat
≥0
R → sSet defined in 1.3.1.6 of [Lur17].

Proof. The isomorphism N nec
∗ ◦ Π ∼= Λ is exactly the statement of Theorem 6.1 in [RZ18].

The isomorphism Λ ∼= Ω ◦ C̃∆
∗ is shown in Theorem 4.16 of [HL22]. �

5.4. B∞-coalgebras. We introduce the notion of a B∞-coalgebra, i.e. a categorical coalge-
bra equipped with the extra structure of compatible coassociative coproducts on the chain
complexes of morphisms of its cobar construction. This notion is the many object version
of the linear dual of a B∞-algebra, as introduced in [GJ94].

Definition 5.15. A B∞-coalgebra is a categorical coalgebra C equipped with degree 0
coassociative coproducts

∇x,y : Ω(C)(x, y)→ Ω(C)(x, y)⊗ Ω(C)(x, y)

for all x, y ∈ PC making Ω(C) into a category enriched over (dgCoalg≥0
R ,⊗). If C is a dif-

ferential (non-negatively) graded connected coalgebra, considered as a categorical coalgebra
with a single object, then a B∞-coalgebra structure is equivalent to a coassociative coprod-
uct on the ordinary cobar construction ∇ : Ω(C) → Ω(C) ⊗ Ω(C) making the dg algebra
Ω(C) into a dg bialgebra.

B∞-coalgebras form a category B∞CoalgR with morphisms given by morphisms of cat-
egorical coalgebras that respect the additional structure. If C is a categorical coalgebra
with a single object, i.e. PC is a singleton, then a B∞-coalgebra structure is equivalent to
a coproduct on the dg algebra Ω(C) making it into a dg bialgebra. The cobar construction
may now be considered as a functor

Ω : B∞CoalgR → Cat
dgCoalg

≥0
R

,

where Cat
dgCoalg

≥0
R

denotes the category of categories enriched over the monoidal category

(dgCoalg≥0
R ,⊗). A morphism in Cat

dgCoalg
≥0
R

will be called a quasi-equivalence if it is a quasi-

equivalence of underlying dg categories.

5.5. Normalized chains as a B∞-coalgebra. Let C̃∆
∗ : sSet→ cCoalgR be the normalized

chains functor as defined in Definition 5.8. For any X ∈ sSet and x, y ∈ X0 we construct a
natural coassociative coproduct

∇x,y : ΩC̃∆
∗ (X)(x, y) → ΩC̃∆

∗ (X)(x, y) ⊗ ΩC̃∆
∗ (X)(x, y).

Note that we have a canonical isomorphism of dg R-modules

(N�

∗ (�n), δ) ∼= (N∆
∗ (∆1), ∂)⊗n.
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Since N∆
∗ (∆1) is a dg coalgebra when equipped with Alexander-Whitney coproduct, the

above isomorphism yields a dg coalgebra structure on N�
∗ (�n) via the monoidal structure

of dgCoalg≥0
R . This gives rise to a coassociative coproduct of degree 0 denoted by

∇ : N�

∗ (�n)→ N�

∗ (�
n)⊗N�

∗ (�n)

and known as the Serre coproduct. We write C�
∗ (�

n) = (N�
∗ (�n), δ,∇) ∈ dgCoalg

≥0
R .

Finally, for an arbitrary cubical set with connections K, define

C�

∗ (K) = colim
�n→K

C�

∗ (�
n) ∈ dgCoalg

≥0
R .

Note that the underlying dg R-module of C�
∗ (K) is (N�

∗ (K), δ) so we write

C�

∗ (K) = (N�

∗ (K), δ,∇) ∈ dgCoalg
≥0
R .

This construction gives rise to a strong monoidal functor

C�

∗ : (cSet,⊠)→ (dgCoalg≥0
R ,⊗).

Consequently, we obtain an induced functor

C�∗ : CatcSet → Cat
dgCoalg

≥0
R

by applying C�
∗ at the level of mapping spaces. Define

Cnec∗ : CatnSet → Cat
dgCoalg

≥0
R

to be the composition

CatnSet
R
−→ CatcSet

C�
∗−−→ Cat

dgCoalg
≥0
R

.

The following is now a straightforward consequence of the definitions.

Proposition 5.16. The composition of functors Cnec∗ ◦ Π provides a lift of

N nec
∗ ◦ Π : sSet→ dgCat

≥0
R

to the category Cat
dgCoalg

≥0
R

of categories enriched over dg coalgebras.

By Proposition 5.14, we have a natural isomorphisms of functors

N nec
∗ ◦ Π ∼= Ω ◦ C̃∆

∗ .

Hence, Proposition 5.16 provides a natural B∞-coalgebra structure on C̃∆
∗ (X) for any sim-

plicial set X. This gives rise to a functor

C̃∗ : sSet→ B∞CoalgR.

The following commutative diagram summarizes the main constructions of this section

(5.1)

Quiv Cat

sSet CatnSet

B∞CoalgR Cat
dgCoalg

≥0
R

.

j

F

τ

C̃∗

Π

Cnec
∗

Ω

In the above diagram, τ is the functor that associates to any category the induced neckli-
cal category with discrete mapping spaces, j sends any quiver to its associated 1-skeletal
simplicial set, and F sends any quiver to the free category that it generates. Consequently,
the functor Π : sSet → CatnSet may be regarded as a generalization of the free category
generated by a quiver but now taking into account higher structure.
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5.6. The extended cobar construction. We may use the coalgebra structure on the
morphisms of the cobar construction of a B∞-coalgebra to define an extended version of Ω
as follows. Let

S : (dgCoalg≥0
R ,⊗)→ (Set,×)

be the strong monoidal functor defined by

S(C, ∂,∆) = {x ∈ C|∆(x) = x⊗ x and ε(x) = 1},

where ε : C → R denotes the counit. The elements of S(C, ∂,∆) are called the set-like

elements. Note that all set-like elements in a dg coalgebra C ∈ dgCoalg
≥0
R are of degree 0.

There is an induced functor

S : Cat
dgCoalg

≥0
R

→ Cat

given by applying S on mapping spaces. Given any C ∈ Cat
dgCoalg

≥0
R

define

C[S(C)−1] ∈ Cat
dgCoalg

≥0
R

by formally (strictly) inverting all set-like elements in all the dg coalgebras of morphisms in
C and declaring the newly added inverses to be set-like.

Remark 5.17. We will only apply the above construction when C is a cofibrant dg cat-
egory, in which case the strict localization is a homotopy invariant with respect to quasi-
equivalences.

Definition 5.18. The extended cobar construction is the functor

Ω̂ : B∞CoalgR → Cat
dgCoalg

≥0
R

given on any C ∈ B∞CoalgR by

Ω̂(C) = Ω(C)[S(Ω(C))−1].

We now have the following localized version of diagram 5.2.

(5.2)

Quiv Cat

sSet CatnSet

B∞CoalgR Cat
dgCoalg

≥0
R

.

j

i◦L◦F

τ

C̃∗

Π̂

Cnec
∗

Ω̂

Here Π̂(X) is defined by formally inverting all 0-dimensional necklaces in all the mapping
spaces of Π(X). The functors L and i are the localization and inclusion functors defined in
Definition 2.7.

5.7. Proof of Theorem 1.2. Part (1) of Theorem 1.2 follows immediately from the above
construction. Part (2) follows since , for any simplicial set X and vertices x, y ∈ X0, we
have a natural isomorphism of dg coalgebras

Ω(C̃∗(X))(x, y) ∼= C�

∗ (R!(Π(X)(x, y))).

Note that the set-like elements of the dg coalgebra C�
∗ (K) for any K ∈ cSet are exactly the

0-cubes in K. The 0-cubes in R!(Π(X)(x, y)) ∈ cSet are all necklaces of 1-simplices in X
connecting x and y; these are precisely the elements of the set F (Q(X))(x, y) of morphisms
from x to y in the free category generated by the underlying quiver of X.

We prove part (3). It follows from Proposition 4.5 and Corollary 4.6 that the maps

Ĉ(X)
µX−−→ ιLC(X)

ι(L(SzX))
−−−−−−→ G(X)
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are weak equivalences of simplicial categories. Since the simplicial chains functor sends weak
homotopy equivalences to quasi-isomorphisms, the induced map

C∆∗ (ι(L(SzX)) ◦ µX) : C∆∗ (Ĉ(X))→ C∆∗ (G(X))

is a quasi-equivalence in Cat
dgCoalg

≥0
R

.

We now construct a natural quasi-equivalence

TX : Ω̂(C̃∗(X))→ C∆∗ (Ĉ(X)).

First recall that for any K ∈ cSet we have a natural quasi-isomorphism of dg coalgebras

EZ�

K : C�

∗ (K)→ C∆
∗ (T (K))

where T : cSet→ sSet is the triangulation functor. The map EZ�

K is induced by the classical
Eilenberg-Zilber shuffle map of dg coalgebras

EZ : C�

∗ (�
n) ∼= C∆

∗ (∆1)⊗n → C∆
∗ ((∆1)×n)

after using the identifications C�
∗ (K) ∼= colim

�n→K
C�
∗ (�

n) and C∆
∗ (T (K)) ∼= colim

�n→K
C∆
∗ ((∆1)×n).

The fact that EZ�

K is a quasi-isomorphism follows from a standard acyclic models argument.
The fact that EZ�

K is a map of dg coalgebras follows from 17.6 in [EM66], which says that
the classical Eilenberg-Zilber shuffle map preserves coalgebra structures. Note that EZ�

K

sends an n-cube in C�
n (K) to a signed sum of n! n-simplices in C∆

∗ (T (K)) each labeled by
a permutation of the set {1, 2, ..., n}.

By applying this construction at the level of morphisms, we obtain an induced natural
quasi-equivalence

EZ�

C : C�∗ (C)→ C
∆
∗ (T(C))

for any C ∈ CatcSet.
Applying the above discussion to C = R(Π(X)) together with Proposition 5.12 and the

commutativity of the bottom square of 5.2, we obtain a natural quasi-equivalence

(5.3) Ω(C̃∗(X)) ∼= Cnec∗ (Π(X))
EZ�

R(Π(X))
−−−−−−−→ C∆∗ (T(R(Π(X)))) ∼= C∆∗ (C(X)).

Finally, the quasi-equivalence 5.3 induces a quasi-equivalence TX : Ω̂(C̃∗(X))→ C∆∗ (Ĉ(X))
after localizing at the set-like elements. This follows since

Ω̂(C̃∗(X)) = Ω(C̃∗(X))[S(Ω(C̃∗(X)))−1],

C∆∗ (Ĉ(X)) ∼= C∆∗ (C(X))[S(C∆∗ (C(X))−1],

and EZ�

R(Π(X)) induces an isomorphism of categories

S(Ω(C̃∗(X)))
∼=
−→ S(C∆∗ (C(X)).

5.8. The extended cobar construction as a model for the path category. We now
state some consequences of Theorems 1.1 and 1.2. The first is that the extended cobar
construction

Ω̂ : B∞CoalgR → Cat
dgCoalg

≥0
R

yields a model for the path category when applied to the B∞-coalgebra of normalized chains.
This is Theorem 1.3, which we restate in the following.

Corollary 5.19. For any simplicial set X ∈ sSet, the dg coalgebra enriched categories

Ω̂(C̃∗(X)) and C∆∗ (P(X)) are naturally quasi-equivalent.
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Proof. As we have seen in the previous section, we have quasi-equivalence

Ω̂(C̃∗(X))
≃
−→ C∆∗ (G(X))

in Cat
dgCoalg

≥0
R

. By Theorem 4.10, the simplicial categories G(X) and P(X) are natu-

rally weakly equivalent. This implies that C∆∗ (G(X)) and C∆∗ (P(X)) are naturally quasi-
equivalent as objects in Cat

dgCoalg
≥0
R

. �

When X is a reduced simplicial set then Ω(C̃∗(X)) has a single object, so it may be
considered as a dg bialgebra. In fact, there is an isomorphism of underlying dg algebras

ϕ : Ω(C∆
∗ (X))

∼=
−→ Ω(C̃∗(X)),

where the left hand side is now the classical cobar construction of the connected dg coalgebra
of normalized chains on X. The map ϕ is determined by defining ϕ(s−1σ) = s−1σ − 1R
if σ ∈ X1 and ϕ(s−1σ) = s−1σ if σ ∈ Xn for n > 1. Then ϕ is extended to monomials of
arbitrary length in Ω(C∆

∗ (X)) as an algebra map. This induces a natural isomorphism of
dg algebras after localizing

ϕ : Ω̂(C∆
∗ (X))

∼=
−→ Ω̂(C̃∗(X)),

where the left hand side is now the extended cobar construction as defined in section 1.2
in [HT10]. Since Ω̂(C̃∗(X)) has a dg bialgebra structure when equipped with the Serre

coproduct, one obtains a natural dg bialgebra structure on Ω̂(C∆
∗ (X)) via the isomorphism

ϕ. The dg coalgebra structure on Ω(C∆
∗ (X)) is induced by the homotopy Gerstenhaber

coalgebra structure on C∆
∗ (X), as explained in Appendix A of [Fra21]. This coproduct on

the cobar construction was also studied by Baues in [Bau81].
Hess and Tonks also define a quasi-isomorphism of dg algebras

φ : Ω̂(C∆
∗ (X))→ C∆

∗ (GKan(X)),

in terms of the Szczarba operators, see Theorem 7 of [HT10]. The map φ is induced by
Szczarba’s twisting cochain t : C∆

∗ (X) → C∆
∗ (GKan(X)) as recalled in 5.3 of [Fra21]. As

a consequence of Theorem 1.2 we obtain that Hess and Tonk’s map φ is comultiplicative,
which is the main theorem in [Fra21].

Corollary 5.20. For any 0-reduced simplicial set X, the composition

Ω̂(C∆
∗ (X))

ϕ
−→ Ω̂(C̃∗(X)))

TX−−→ C∗(Ĉ(X))
C∗(ι(L(SzX))◦µX )
−−−−−−−−−−−−→ C∆

∗ (GKan(X))

is a quasi-isomorphism of dg bialgebras. Furthermore, we have

C∗(ι(L(SzX)) ◦ µX) ◦ TX ◦ ϕ = φ.

Proof. It follows from Theorem 1.2 that the composition of maps is a quasi-isomorphism
of dg bialgebras. The fact that this composition coincides with φ follows by unraveling
the formula explicitly. More precisely, on an element σ ∈ Xn+1, considered as a necklace
of length 1 and dimension n, (C∗(ι(L(SzX)) ◦ µX) ◦ TX ◦ ϕ)(σ) coincides with Szczarba’s
twisting cochain applied to σ: it is given by applying the Szczarba map to the signed sum
of n! n-simplices each labeled by the permutation corresponding to an n-simplex in (∆1)×n

using ϕ(σ) = σ − 1R if n = 0. �

Appendix A. Model Structures

In this appendix we collect the various model structures used throughout this paper. If
C is a model category, we will denote the underlying hom set between two objects X,Y ∈ C

by C(X,Y ), and the set of homotopy classes of maps by C[X,Y ].
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A.1. The Kan-Quillen model structure on simplicial sets. A simplicial set K is a
Kan complex if any horn f : Λn

k → K can be extended to f̃ : ∆n → K for 0 ≤ k ≤ n. Given
any Kan complex K denote by sSetKQ[X,K] the set of simplicial homotopy classes of maps
from X to K.

Theorem A.1. There exists a proper and cofibrantly generated model structure on the
category of simplicial sets in which

(1) a map f : X → Y is a weak equivalence if for every Kan complex K the induced
map of sets of simplicial homotopy classes of maps sSetKQ[Y,K] → sSetKQ[X,K]
is an isomorphism,

(2) the cofibrations are the monomorphisms, and
(3) the fibration are the Kan fibrations i.e. maps f : X → Y with the right lifting

property with respect to horn inclusions Λn
k → ∆n for all n ≥ 1 and 0 ≤ k ≤ n.

We call the above model category structure the Kan-Quillen model structure on simplicial
sets. We denote it by sSetKQ. All objects in sSetKQ are cofibrant. The fibrant objects in
sSetKQ are precisely the Kan complexes. We will call the weak equivalences in sSetKQ

simply weak homotopy equivalences of simplicial sets.
The Kan-Quillen model category is a model for the homotopy theory of homotopy types.

Theorem A.2. The adjunction

| − | : sSetKQ ⇄ TopQ : Sing

defines a Quillen equivalence of model categories, where TopQ denotes the classical model
structure on topological spaces.

A.2. The Joyal model structure on simplicial sets. A simplicial set Q is a quasi-
category if any horn f : Λn

k → Q can be extended to f̃ : ∆n → Q for 0 < k < n.
Consider the groupoid Jn = L[n], where [n] is the category determined by the poset

{0 → 1 → ... → n} and L is the localization functor from categories to groupoids. We will
abuse notation and write J = J1. Let N(Jn) be the Kan complex obtained by applying the
nerve functor N . Given a quasi-category Q and a simplicial set X, two maps f, g : X → Q
are said to be J-homotopic if there is a map H : X ×N(J) → Q such that H ◦ i0 = f and
H◦i1 = g, where i0, i1 : X → X×N(J) are the natural inclusions. The notion of J-homotopy
defines an equivalence relation on the set sSet(X,Q). Denote the set of equivalence classes
by sSetJ [X,Q].

Theorem A.3. There exists a left proper and cofibrantly generated model structure on the
category of simplicial sets in which

(1) the weak equivalences are maps f : X → Y such that for every quasi-category Q, the
induced map sSetJ [Y,Q]→ sSetJ [X,Q] is an isomorphism of sets,

(2) the cofibrations are the monomorphisms, and
(3) the fibrant objects are the quasi-categories.

We call the above model category structure the Joyal model structure on simplicial sets.
We denote it by sSetJ . All objects in sSetJ are cofibrant. We will call a weak equivalence
in sSetJ a Joyal equivalence.

For any quasi-category Q and simplicial set X, the derived mapping space RsSetJ(X,Q)
may be defined as the simplicial set whose n-simplices are given by maps X ×N(Jn)→ Q.

A fundamental fact in the theory of quasi-categories, used repeatedly in this article, is
the following.

Theorem A.4 ([Joy02, Corollary 1.4]). A quasi-category Q is a Kan complex if and only
if its homotopy category π0(C(Q)) is a grupoid.

We also record that sSetKQ is a left Bousfield localization of sSetJ .
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Proposition A.5 ([Rie08, Propositions 5.9, 5.10]). The Kan-Quillen model category sSetKQ

is a left Bousfield localization of the Joyal model category sSetJ . In particular, a Joyal
equivalence is a weak homotopy equivalence and every weak homotopy equivalence between
Kan complexes is a Joyal equivalence.

Remark A.6. In fact, the model category sSetKQ is the left Bousfield localization of sSetJ at
the single morphism p : ∆1 → ∆0. For any quasi-category Q, the map p∗ : RsSetJ(∆

0, Q)→
RsSetJ(∆

1, Q) between derived mapping spaces is a weak homotopy equivalence if and only
if the homotopy category of Q is a groupoid. This implies that the fibrant objects in the
left Bousfield localization are precisely quasi-categories and the weak equivalences are the
Joyal equivalences.

A.3. The Dwyer-Kan model structure on simplicial groupoids.

Theorem A.7 ([DK84], [Ber08, Theorem 2.2]). There exists a cofibrantly generated model
category structure on the category of simplicial groupoids such that

(1) the weak equivalences are maps F : C → D such that
(a) the induced functor

π0C
π0F−−→ π0D

is an equivalence of categories, and
(b) for all objects x, y ∈ C, the induced morphism

C(x, y)
F
−→ D(Fx, Fy)

is a weak homotopy equivalence of simplicial sets,
(2) the fibrations are maps f : C → D such that

(a) the induced functor

π0C
π0F−−→ π0D

is an isofibration of categories, and
(b) for all objects x, y ∈ C, the induced morphism

C(x, y)
F
−→ D(Fx, Fy)

is a Kan fibration.

We call the above model category structure the Dwyer-Kan model structure on simplicial
groupoids. We denote it by GpdsSet,DK . Every object in GpdsSet,DK is fibrant. This model
category structure models the homotopy theory of homotopy types.

Theorem A.8 ([DK84, Theorem 3.3]). The adjunction

(A.1) GKan : sSetKQ ⇄ GpdsSet,DK : W
Kan

defines a Quillen equivalence.

The above result is a generalization of a "one object" version originally due to Kan. More
precisely, there are model structures on the category sSet0 and on the category of simplicial

groups sGrp such that the adjunction GKan : sSet0 ⇄ sGrp : W
Kan

becomes a Quillen
equivalence. A complete proof of this result may be found in [GJ09]. We denote these
model structures by sSet0KQ and sGrpKQ.

A.4. The Bergner model structure on simplicial categories.

Theorem A.9 ([Ber07], [Lur09, Theorem A.3.2.4]). There exists a proper and cofibrantly
generated model category structure on the category of simplicial categories such that

(1) the weak equivalences are maps F : C → D such that
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(a) the induced functor

π0C
π0F−−→ π0D

is an equivalence of categories
(b) for all objects x, y ∈ C, the induced morphism

C(x, y)
F
−→ D(Fx, Fy)

is a weak homotopy equivalence, and
(2) the fibrations are maps F : C → D such that

(a) the induced functor

π0C
π0F−−→ π0D

is an isofibration of categories, and
(b) for all objects x, y ∈ C, the induced morphism

C(x, y)
F
−→ D(Fx, Fy)

is a Kan fibration.

We call the above model category structure the Bergner model structure on simplicial
categories. We denote it by CatsSet,B. This model category structure models the homotopy
theory of infinity categories. The following result has been proven by Joyal and Lurie
independently.

Theorem A.10. The adjunction

C : sSetJ ⇄ CatsSet,B : N

defines a Quillen equivalence.

In particular, a map of simplicial sets f : X → Y is a Joyal equivalence if and only if
C(f) : C(X)→ C(Y ) is a weak equivalence of simplicial categories. Proposition A.5 implies
that if X and Y are Kan complexes, then a map f : X → Y is a weak homotopy equivalence
if and only if C(f) : C(X)→ C(Y ) is a weak equivalence of simplicial categories.

A.5. A model structure on simplicial categories modelling homotopy types. Al-
though we do not use it explicitly in this article, some of our constructions may be explained
in the following model category structure on CatsSet modelling homotopy types.

Theorem A.11. The adjunction C : sSet ⇄ CatsSet : N induces a Quillen equivalence
between

C : sSetKQ ⇄ LSCatsSet,B : N

where LSCatsSet,B denotes the left Bousfield localization of the Bergner model structure at
the singleton S = {C(p) : C(∆1)→ C(∆0)}.

Proof. The left Bousfield localization LSCatsSet,B exists by Theorem 4.7 in [Bar10] since
CatsSet,B is left proper and combinatorial. The result then follows from Proposition A.5
and Remark A.6 together with the functoriality of left Bousfield localization along Quillen
equivalences as proven in Theorem 3.3.20 in [Hir09]. �

Remark A.12. The weak equivalences in LSCatsSet,B are maps of simplicial categories
that become weak equivalences in the Bergner model structure after applying a cofibrant
replacement functor followed by the localization functor. Fibrant objects are Kan enriched
simplicial categories whose homotopy category is a groupoid.

Since the adjunction

ι : GpdsSet,DK ⇄ LSCatsSet,B : L

is clearly a Quillen equivalence, we obtain another localized version of Theorem A.10.
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Corollary A.13. The Quillen adjunction

LC : sSetKQ ⇄ GpdsSet,DK : Nι

defines a Quillen equivalence.
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