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Introduction

e Going to talk about some WIP in categorical database theory.

e This work expands the algebraic model of categorical database
theory developed in “Algebraic Databases” [Sch+17] and “Algebraic
Data Integration” [SW17].

e (Some of) the main results:

Introduce (non-strict) proqueries, data transformations similar to
conjunctive queries,

Prove correctness of proquery presentation composition algorithm
(building off of a similar algorithm for uberflower composition in
[SwW17)]),

Introduce praqueries, data transformations similar to unions of
conjunctive queries,

Introduce and prove correctness of praquery presentation

composition algorithm.
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Categorical Database Theory: the story so far

1970 - Relational database theory is born [Cod70]

e Beginning of overlap between DB and CT! - [BS81], [LS90],
[RW91], [JD94]

Sketch Data Model (Rosebrugh, Johnson) - [JRWO00], [JR02]
Modern Iteration -

e Spivak (2012) - Functorial Data Migration [Spil2]

e Spivak, Wisnesky (2015) - Relational Foundations for Functorial
Data Migration [SW15]

e Schultz, Wisnesky (2017) - Algebraic Data Integration [SW17]

e Schultz, Vasilakopoulou, Wisnesky, Spivak (2017) - Algebraic
Databases [Sch+17]

e Lynch, Patterson, Fairbanks - Categorical data structures for
technical computing [PLF22]

IReferences from Rosebrugh's talk [Ros]

2/ 44



Categorical Database Theory: the story so far

1970 - Relational database theory is born [Cod70]

e Beginning of overlap between DB and CT? - [BS81], [LS90],
[RW91], [JD94]

Sketch Data Model (Rosebrugh, Johnson) - [JRWO00], [JR02]
Modern Iteration -

e Spivak (2012) - Functorial Data Migration [Spil2]

e Spivak, Wisnesky (2015) - Relational Foundations for Functorial
Data Migration [SW15]

e Schultz, Wisnesky (2017) - Algebraic Data Integration [SW17]

e Schultz, Vasilakopoulou, Wisnesky, Spivak (2017) - Algebraic
Databases [Sch+17]

e Lynch, Patterson, Fairbanks - Categorical data structures for
technical computing [PLF22]

?References from Rosebrugh's talk [Ros]

3/44



The Functorial Data Model



The Functorial Data Model

Let us quickly recall the Functorial Data Model [Spil2].

Database Schema +— (small) Category C

Database Instance +— Copresheaf Z : C — Set
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The Functorial Data Model

Really what we are interested in are category presentations.

A cat pres. C consists of sets

Sort(C), Fun(C), and Egq(C).

Example:
mar mgr.dep = dep
Emp mgr.mgr = mgr
depg jsec
Dept sec.dep = 1pept
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The Functorial Data Model

Really what we are interested in are category presentations.

A cat pres. C consists of sets

Sort(C), , and Eq(C).
Example:
mgr.dep = dep
Emp mgr.mgr = mgr
Dept sec.dep = 1pept

Note: Equations are between paths, written p =¢ g and composition is
written left to right.
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The Functorial Data Model

Given a category presentation C, we let (C) denote the category it
presents. We also call (C) the semantics of C. Its objects are the sorts
of C and its morphisms are the paths in C, modulo equations.

More formally (C))(c, ¢’) is the set of paths from ¢ to ¢’ modulo the
provable equality relation ~., defined as follows:

p=cq p=cdq p=~cgq q=cr

prcq prcp g=cp prcr

fic—c prcq:c —c”

f.p~cf.q

f:c —c prcqg:ic—c

p.f ~¢ q.f
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The Functorial Data Model

We have the following sets of morphisms
(C)(Emp, Dept) = {[dep] = [dep.sec.dep] = [mgr.dep] = [mgr.mgr.dep]},

(C)(Dept, Emp) = {[sec] = [sec.dep.sec], [sec.mgr]}

Example:
o mgr.dep = dep
Emp mgr.mgr = mgr
depg jsec
Dept sec.dep = 1pept
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The Functorial Data Model

Can define schema/category presentation morphisms F : C — D by
functions Fy : Sort(C) — Sort(D) and F; : Fun(C) — Path(D). Let F
denote the extension of F; to paths.

We require that if p =c¢ g, then F(p) =c F(q).

B mgr mgr.dep = dep
fg=fFfrf.g A s Emp mgr.mgr = mgr
gi depL Tsec
B Dept sec.dep = lpept
F(f.g) # F(f.f.g), but F(f.g) ~c F(f.f.g)
mgr.dep # mgr.mgr.dep, but mgr.dep ~¢ mgr.mgr.dep
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The Functorial Data Model

Get a category CatPr with semantics functor

(—) : CatPr — Cat

Can also define instance presentations.

T mgr.dep = dep
Emp mgr.mgr = mgr

* dep sec sec.dep = 1Dept

Dept e.dep =d
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The Functorial Data Model

An instance presentation / consists of a collection of generators and
equations. We write | = (Ir | Ig).

Example:
| = (e:Emp,d: Dept | e.dep = d)

- mgr.dep = dep
Emp mgr.mgr = mgr

* dep sec sec.dep = 1Dept

Dept e.dep =d
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The Functorial Data Model

Given an instance presentation

| = (e:Emp,d : Dept | e.dep = d)

we can display it using tables:

Emp ‘ mgr ‘ dep ‘
e e.mgr d
e.mgr e.mgr d
d.sec d.sec.mgr | d
d.sec.mgr | d.sec.mgr | d

O Jds

These are analogous to relational tables of incomplete information
[Are+14, Section 2.3], also called labelled nulls.
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The Functorial Data Model

Given an instance presentation / on a schema presentation C, we obtain
semantics [/] : (C)) — Set by setting

[11(e) = {* = ¢}/ ~eq(cyuie

Morphisms of instance presentations ¢ : | — J over a schema
presentation C require * to be sent to * and are the identity on C.

Get category ClnstPr and semantics functor

[] : ClnstPr — Set(<)
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The Functorial Data Model

Note however, that there is no actual “data” in our tables. We merely
keep track of primary keys and foreign keys.

Emp mgr ‘ dep ‘
e [emgr [
e.mgr e.mgr d

d.sec
d.sec d.sec.mgr | d m-
d.sec.mgr | d.sec.mgr | d

To add in “data”, we use the Algebraic Model [Sch+17], [SW17].
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The Algebraic Data Model



The Algebraic Data Model

An algebraic signature ¥ consists of sets:

Sort(X), and Fun(X),

But now, function symbols are allowed to have higher arity.
We say f: (s1,...,5,) — s has arity n.

We call 0-ary function symbols constant symbols.
Example: Algebraic signature for groups >gp

Sort(Xerp) = {G},
Fun(Zep) ={m:(G,G) = G,e: () = G,i: G — G}
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The Algebraic Data Model

We can visualize function symbols as follows

G G 0 G
|
Se e

G G G

We can build terms by putting these function symbols together

G
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The Algebraic Data Model

We use a convenient notation for these terms. For example:

G

\

B/ \
e

0 ——[e]

G —— G

Can be written as

x,y: GFm(m(x,i(y)),e): G
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The Algebraic Data Model

Use the terminology:

Term

Context Sort

X,y GEm(m(x,i(y)),e): G

An algebraic presentation T consists of an algebraic signature
(Sort(T),Fun(T)) and a set Eq(T) of equtions between terms

Example: Algebraic presentation of groups Tgrp
Sort(Ter) ={G ),
Fun(Tgp) ={m:(G,G) —» G,e: ()= G,i: G — G}
Eq(Terp) ={[x,y,z: G+ m(m(x,y),z) = m(x,m(y,z)) : G],
[x:GFm(x,e) =x],[x: GF m(e,x) = x]
[x: GFm(x,i(x))=¢€],[x: GF m(i(x),x)=¢€]}
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The Algebraic Data Model

If T is an algebraic presentation, we can define an equivalence relation
~T on terms, similar to category presentations.

Let [T] denote the category whose objects are contexts, and morphisms
are terms modulo ~7.

The function symbols produce morphisms

GxG™G,  +5G, G5H6

Morphisms of algebraic presentations F : T — T’

Sorts s — Sorts F(s)
Function Symbols f — Terms F(f)
Equations t =1 t’ — Provable Equations F(t) ~1/ F(t')

Semantics gives a functor [—] : AlgPr — FPCat.
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The Algebraic Data Model

Let us fix an algebraic presentation Ty, that we call the typeside.

Example:
Sort(Ty) = {Str, Int},

Fun(Ty) = {+ : (Int,Int) — Int,succ : Int — Int,0: () — Int,
U : (Str,Str) — Str, “a", ..., "Z" : () — Str}

Now let us define an algebraic schema presentation.
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The Algebraic D Model

An algebraic schema presentation U over a fixed typeside Ty, consists of

e Entityside: Entities, Foreign Keys, Entity Equations,
e Typeside,
e Attributes, Schema Equations

mgr S0CG e: Emp - e.mgr.dep = e.dep : Dept
Emp s2 Int 0 0 e : Emp - e.mgr.mgr = e.mgr : Emp
dep sec ename
Dept —dname % gy (Int, Int) d : Dept - d.sec.dep = d : Dept
& gooop 2 U
™~
0 (Str, Str) e : Emp - e.mgr.sal = e.sal + 100 : Int
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The Algebraic Data Model

An algebraic schema presentation U over a fixed typeside Ty, consists of

e Entityside: Entities, Foreign Keys, Entity Equations,
e Typeside,
e Attributes, Schema Equations

mgr succ e : Emp - e.mgr.dep = e.dep : Dept
Emp e : Emp - e.mgr.mgr = e.mgr : Emp
Dept % Str (Int, Int) d : Dept - d.sec.dep = d : Dept
“a" ZT @]
S
0 (Str, Str) e : Emp - e.mgr.sal = e.sal + 100 : Int

Note: We typically do not denote the typeside operations. They are

understood from the definition of Ty.
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The Algebraic Data Model

So an algebraic schema presentation looks like the following:

mgr

()

Emp — 2 Int

depg jsec\nanle

Dept —dm2me 5 Gy

We want semantics to reflect this structure.
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The Algebraic Data Model

Def: Given categories C, D, a bipartite category® & : C + @D consists of
a category & equipped with a functor 7 : § — 2 such that 7=1(0) = C
and 771(1) = @.

Thus if U is a schema presentation, then we obtain a bipartite category

Entity category Typeside
~ = ~ N
W= (U = [T]

This inspires the following definition.

3Equivalently a profunctor
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The Algebraic Data Model

Def: Given a fixed finite product category J, a schema consists of a

bipartite category
U: U+ T,

such that the inclusion 7 < U preserves finite products®.

An instance on U is a functor Z : Ul — Set that preserves the finite
products of 7.

We can define schema presentations and instance presentations as before.

This allows us to input schemas and presentations into a computer.

4Also called an algebraic profunctor in [Sch+4-17]
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The Algebraic Data Model

In the algebraic model, instances can now display data other than
labelled nulls, while still having incomplete information.

Example:
Ir = (e0, €1, e : Emp, do, dy : Dept)
eg.ename = “Alice”, ej.ename = “Bob"”, e;.ename = “Charlie”,
dyp.dname = “CS", di.dname = “Math”,
e =
€p.-mgr = €p, €1.mgr = €, €2.mgr = €,
Emp | mgr | dep | sal ename
‘ ‘ 2 ‘ ‘ ‘ : ‘ ’ Dept ‘ sec ‘ dname
) ) do 100 “Alice” r S
m " 0 €0
e e dq e;.sal Bob = =
T By dy € Math
e e dq er.sal Charlie

26 / 44



The Algebraic Data Model

Now in order to really call ourselves database theorists, we need to be
able to query our data.

Idea of Proqueries: Profunctors between algebraic schemas.

Def: Given a schema U and u € U, let y(u) denote the U-instance
given by

y(u)(u') = Uu, ).
Call this the representable instance on wv.

Can be presented very easily:

1 generator NO equations

yw=[ 52 | "@ )
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The Algebraic Data Model

Def: Given schemas U and {/, a (strict) proquery is a functor
P : U — Vlnst, such that P(t) = y(t), for every t € Ty, where y(t) is
the representable instance on t.

In general, we allow proqueries to have P(t) = y(t). However, every
proquery is isomorphic to a strict proquery.

Think of analogue of profunctor as & : C°P — Set” with an extra twist
due to attributes.
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The Algebraic Data Model

Easier to understand using presentations.

Proquery P : “Select the name and (salary + 50) of all employees who

are their own manager”

SELECT e.ename AS newname, e.sal + 50 AS newsal,
FROM e : Emp,

WHERE e.mgr = ¢;

mgr
Int Emp —sal s nt e.mgr=e
e
newsalT /
NeWEmp dep sec ename
nevvnamel
Str Dept —dname gy
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The Algebraic Data Model

SELECT e.ename AS newname, e.sal + 50 AS newsal,
FROM e : Emp,
WHERE e.mgr = ¢;

This gives a diagram of U-instance presentations.

y(lnt) newsal P(NewEmp) newname _)/(Stl’)

newsal newname

(n:Int|g) ———"— (e:Emp|emgr=¢e) +——— (s:5Str| &)

newsal = (n+— [e : Emp I e.sal + 50 : Int])

newname = (s — [e : Emp - e.ename : Str])

30/ 44



The Algebraic Data Model

Given a proquery # : U + 1/, get a functor
[y : Vinst — Ulnst

This is called the evaluation functor. Defined for Z € {Inst and u € U
by
Fp(Z)(u) = Vinst(P(u),T)

It has a left adjoint A, called co-evaluation.

Thm[Sch+17, Thm 8.10] If F : ¥Inst — Ulnst is a functor such that
F(Z)(t) =2 Z(t) and is a right adjoint, then there exists a proquery &
such that F = yp.
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The Algebraic Data Model

Proquery P: U + V

SELECT e.ename AS newname, e.sal + 50 AS newsal,
FROM e : Emp,

WHERE e.mgr = ¢;

V-Instance [/

’ Emp ‘ mer ‘ e ‘ =2 ‘ cename ‘ ‘ Dept ‘ sec ‘ dname
€0 €o do | 100 “Alice” g “CS”
e
e1 |e |di | esal | “Bob” ¥ e ey sen
e e dq er.sal | “Charlie” L 2

U-Instance I'p(/)

’ NewEmp | newname | newsal
€o “Alice” 150
e “Charlie” | es.sal +50
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New Work




Given proqueries @ : U - ¥ and Q : ¥ - W, we can compose them by

setting
vel

(#?©Q)(u) = P(u;v)-Q(v)
taken in the category ¥Inst. Analogous to subquery unnesting or view
unfolding in database theory.

However, in [Sch+17] and [SW17], two inequivalent notions of proquery
presentation are given.

e Called bimodule presentations in [Sch+17], and
o Called uberflowers in [SW17].

A composition operation for uberflowers is sketched, but never proven to
be semantically correct.

A composition operation for bimodule presentations is not given.
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It turns out that a “semantically correct” and finite-preserving
composition operation cannot be given for bimodule presentations!

This motivated us to write “Presenting Profunctors” [RMM24].

New Contribution: Give fully specified definition of proquery
presentation and prove their correctness, i.e. define a composition
operation P ® @ such that (P ® Q) = (P) ® (Q)), and this preserves
finiteness of the presentations.
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New Contribution: We introduce praqueries. These are similar to
proqueries using the following analogy:

proqueries ~ conjunctive queries
praqueries ~ unions of conjunctive queries

Def: Given schemas U and {/, a praquery & : U + ¥ consists of

e an instance P : Ulnst such that Py(t) = * for all t € Ty,
e a proquery Py : [Py + V.

Given a praquery @, get an evaluation functor I'p : Inst — Ulnst by

() (u) = Z Vlnst(P1(x), ).

XEPy(u)
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Praquery P : "Select the name and (salary + 50) of all employees who
are their own manager OR the name and salary of all employees in the
Math department”

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,
WHERE e.mgr = ¢;
UNION

SELECT e'.ename AS newname, e'.sal AS newsal,
FROM e' : Emp,
WHERE e'.dep.dname = “Math”;
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Praquery P : “Select the name and (salary + 50) of all employees who
are their own manager OR the name and salary of all employees in the
Math department”

V-Instance [/

’ Emp ‘ mgr ‘ dep ‘ sal ‘ ename ‘
€o €0 do | 100 | “Alice”
e1 e d; 50 “Bob”
e e d; 100 | “Charlie”

‘ Dept ‘ sec ‘ dname
do €0 “CS”
d; e “Math”

U-Instance Evalp(/)

’ NewEmp | newname ‘ newsal ‘

€p “Alice” 150
e “Charlie” | 150
e’y “Bob” 50

e's “Charlie” | 100
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In our new work we:

e Give a definition of praquery presentation, their semantics and a
composition operation.

e Prove correctness of composition of praquery presentations.

e Prove that praqueries can equivalently be described by those
functors @ : VInst — Ulnst that preserve type-algebras and are
parametric right adjoint/prafunctors.

Def: A functor F : C — @ where C has a terminal object 1 is called a
parametric right adjoint if in the factorization

cho/FQ) S o

the functor F; has a right adjoint.

These kinds of functors have very interesting properties and show up in
many places in category theory: [Sha2l], [GK12], [NS23].
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Thank you!
Questions? Comments? Email me at eminichiello67@gmail.com

Check out implementation of this math using the CQL language at
https://www.categoricaldata.net/
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