
ACT 2024 - Proqueries and Praqueries

Gabriel Goren Roig 1 2, Joshua Meyers 3, Emilio Minichiello 3, Ryan Wisnesky 3

June 17, 2024

1Departamento de Matemática, Universidad de Buenos Aires, Argentina
2Instituto de Ciencias de la Computación (ICC), CONICET

3Conexus AI

Introduction

• Going to talk about some WIP in categorical database theory.

• This work expands the algebraic model of categorical database

theory developed in “Algebraic Databases” [Sch+17] and “Algebraic

Data Integration” [SW17].

• (Some of) the main results:

• Introduce (non-strict) proqueries, data transformations similar to

conjunctive queries,

• Prove correctness of proquery presentation composition algorithm

(building off of a similar algorithm for uberflower composition in

[SW17]),

• Introduce praqueries, data transformations similar to unions of

conjunctive queries,

• Introduce and prove correctness of praquery presentation

composition algorithm.

1 / 44

Categorical Database Theory: the story so far

• 1970 - Relational database theory is born [Cod70]

• Beginning of overlap between DB and CT1 - [BS81], [LS90],

[RW91], [JD94]

• Sketch Data Model (Rosebrugh, Johnson) - [JRW00], [JR02]

• Modern Iteration -

• Spivak (2012) - Functorial Data Migration [Spi12]

• Spivak, Wisnesky (2015) - Relational Foundations for Functorial

Data Migration [SW15]

• Schultz, Wisnesky (2017) - Algebraic Data Integration [SW17]

• Schultz, Vasilakopoulou, Wisnesky, Spivak (2017) - Algebraic

Databases [Sch+17]

• Lynch, Patterson, Fairbanks - Categorical data structures for

technical computing [PLF22]

1References from Rosebrugh’s talk [Ros]

2 / 44

Categorical Database Theory: the story so far

• 1970 - Relational database theory is born [Cod70]

• Beginning of overlap between DB and CT2 - [BS81], [LS90],

[RW91], [JD94]

• Sketch Data Model (Rosebrugh, Johnson) - [JRW00], [JR02]

• Modern Iteration -

• Spivak (2012) - Functorial Data Migration [Spi12]

• Spivak, Wisnesky (2015) - Relational Foundations for Functorial

Data Migration [SW15]

• Schultz, Wisnesky (2017) - Algebraic Data Integration [SW17]

• Schultz, Vasilakopoulou, Wisnesky, Spivak (2017) - Algebraic

Databases [Sch+17]

• Lynch, Patterson, Fairbanks - Categorical data structures for

technical computing [PLF22]

2References from Rosebrugh’s talk [Ros]

3 / 44

The Functorial Data Model

The Functorial Data Model

Let us quickly recall the Functorial Data Model [Spi12].

Database Schema ←→ (small) Category C

Database Instance ←→ Copresheaf I : C → Set

4 / 44

The Functorial Data Model

Really what we are interested in are category presentations.

A cat pres. C consists of sets

Sort(C), Fun(C), and Eq(C).

Example:

mgr.dep = dep

Emp mgr.mgr = mgr

Dept sec.dep = 1Dept

mgr

dep sec

5 / 44

The Functorial Data Model

Really what we are interested in are category presentations.

A cat pres. C consists of sets

Sort(C), Fun(C), and Eq(C).

Example:

mgr.dep = dep

Emp mgr.mgr = mgr

Dept sec.dep = 1Dept

mgr

dep sec

Note: Equations are between paths, written p =C q and composition is

written left to right.
6 / 44

The Functorial Data Model

Given a category presentation C , we let LC M denote the category it

presents. We also call LC M the semantics of C . Its objects are the sorts

of C and its morphisms are the paths in C , modulo equations.

More formally LC M(c , c ′) is the set of paths from c to c ′ modulo the

provable equality relation ≈C , defined as follows:

p =C q

p ≈C q p ≈C p

p ≈C q

q ≈C p

p ≈C q q ≈C r

p ≈C r

f : c → c ′ p ≈C q : c ′ → c ′′

f .p ≈C f .q

f : c ′ → c ′′ p ≈C q : c → c ′

p.f ≈C q.f

7 / 44

The Functorial Data Model

We have the following sets of morphisms

LC M(Emp,Dept) = {[dep] = [dep.sec.dep] = [mgr.dep] = [mgr.mgr.dep]} ,

LC M(Dept,Emp) = {[sec] = [sec.dep.sec], [sec.mgr]}

Example:

mgr.dep = dep

Emp mgr.mgr = mgr

Dept sec.dep = 1Dept

mgr

dep sec

8 / 44

The Functorial Data Model

Can define schema/category presentation morphisms F : C → D by

functions F0 : Sort(C)→ Sort(D) and F1 : Fun(C)→ Path(D). Let F

denote the extension of F1 to paths.

We require that if p =C q, then F (p) ≈C F (q).

mgr.dep = dep

f .g = f .f .g A Emp mgr.mgr = mgr

B Dept sec.dep = 1Dept

f

F

g

mgr

dep sec

F (f .g) ̸= F (f .f .g), but F (f .g) ≈C F (f .f .g)

mgr.dep ̸= mgr.mgr.dep, but mgr.dep ≈C mgr.mgr.dep

9 / 44

The Functorial Data Model

Get a category CatPr with semantics functor

L−M : CatPr→ Cat

Can also define instance presentations.

mgr.dep = dep

Emp mgr.mgr = mgr

∗ sec.dep = 1Dept

Dept e.dep = d

mgr

dep

e

d

sec

10 / 44

The Functorial Data Model

An instance presentation I consists of a collection of generators and

equations. We write I = ⟨IΓ | IE ⟩.

Example:

I = ⟨e : Emp, d : Dept | e.dep = d⟩

mgr.dep = dep

Emp mgr.mgr = mgr

∗ sec.dep = 1Dept

Dept e.dep = d

mgr

dep

e

d

sec

11 / 44

The Functorial Data Model

Given an instance presentation

I = ⟨e : Emp, d : Dept | e.dep = d⟩

we can display it using tables:

Emp mgr dep

e e.mgr d

e.mgr e.mgr d

d.sec d.sec.mgr d

d.sec.mgr d.sec.mgr d

Dept sec

d d.sec

These are analogous to relational tables of incomplete information

[Are+14, Section 2.3], also called labelled nulls.

12 / 44

The Functorial Data Model

Given an instance presentation I on a schema presentation C , we obtain

semantics JI K : LC M→ Set by setting

JI K(c) = {∗ → c}/ ≈Eq(C)∪IE

Morphisms of instance presentations φ : I → J over a schema

presentation C require ∗ to be sent to ∗ and are the identity on C .

Get category C InstPr and semantics functor

J−K : C InstPr→ SetLCM

13 / 44

The Functorial Data Model

Note however, that there is no actual “data” in our tables. We merely

keep track of primary keys and foreign keys.

Emp mgr dep

e e.mgr d

e.mgr e.mgr d

d.sec d.sec.mgr d

d.sec.mgr d.sec.mgr d

Dept sec

d d.sec

To add in “data”, we use the Algebraic Model [Sch+17], [SW17].

14 / 44

The Algebraic Data Model

The Algebraic Data Model

An algebraic signature Σ consists of sets:

Sort(Σ), and Fun(Σ),

But now, function symbols are allowed to have higher arity.

We say f : (s1, . . . , sn)→ s has arity n.

We call 0-ary function symbols constant symbols.

Example: Algebraic signature for groups ΣGrp

Sort(ΣGrp) = {G},
Fun(ΣGrp) = {m : (G ,G)→ G , e : ()→ G , i : G → G}

15 / 44

The Algebraic Data Model

We can visualize function symbols as follows

G G () G

m

G G G

e i

We can build terms by putting these function symbols together

G

m

G i m G

() e

16 / 44

The Algebraic Data Model

We use a convenient notation for these terms. For example:

G

m

G i m G

() e

Can be written as

x , y : G ⊢ m(m(x , i(y)), e) : G

17 / 44

The Algebraic Data Model

Use the terminology:

Term︷ ︸︸ ︷
Context︷ ︸︸ ︷
x , y : G ⊢ m(m(x , i(y)), e) :

Sort︷︸︸︷
G

An algebraic presentation T consists of an algebraic signature

(Sort(T),Fun(T)) and a set Eq(T) of equtions between terms

Example: Algebraic presentation of groups TGrp

Sort(TGrp) ={G},
Fun(TGrp) ={m : (G ,G)→ G , e : ()→ G , i : G → G}
Eq(TGrp) ={[x , y , z : G ⊢ m(m(x , y), z) = m(x ,m(y , z)) : G] ,

[x : G ⊢ m(x , e) = x] , [x : G ⊢ m(e, x) = x]

[x : G ⊢ m(x , i(x)) = e] , [x : G ⊢ m(i(x), x) = e]}

18 / 44

The Algebraic Data Model

If T is an algebraic presentation, we can define an equivalence relation

≈T on terms, similar to category presentations.

Let JT K denote the category whose objects are contexts, and morphisms

are terms modulo ≈T .

The function symbols produce morphisms

G × G
m−→ G , ∗ e−→ G , G

i−→ G

Morphisms of algebraic presentations F : T → T ′

Sorts s 7→ Sorts F (s)

Function Symbols f 7→ Terms F (f)

Equations t =T t ′ 7→ Provable Equations F (t) ≈T ′ F (t ′)

Semantics gives a functor J−K : AlgPr→ FPCat.

19 / 44

The Algebraic Data Model

Let us fix an algebraic presentation Ty, that we call the typeside.

Example:
Sort(Ty) = {Str, Int},
Fun(Ty) = {+ : (Int, Int)→ Int, succ : Int→ Int, 0 : ()→ Int,

∪ : (Str,Str)→ Str, “a”, . . . , “z” : ()→ Str}

Now let us define an algebraic schema presentation.

20 / 44

The Algebraic Data Model

An algebraic schema presentation U over a fixed typeside Ty, consists of

• Entityside: Entities, Foreign Keys, Entity Equations,

• Typeside,

• Attributes, Schema Equations

e : Emp ⊢ e.mgr.dep = e.dep : Dept

Emp Int () e : Emp ⊢ e.mgr.mgr = e.mgr : Emp

Dept Str (Int, Int) d : Dept ⊢ d .sec.dep = d : Dept

() (Str, Str) e : Emp ⊢ e.mgr.sal = e.sal + 100 : Int

mgr

sal

dep ename

succ

0

sec

dname

+

“a”,...,“z” ∪

21 / 44

The Algebraic Data Model

An algebraic schema presentation U over a fixed typeside Ty, consists of

• Entityside: Entities, Foreign Keys, Entity Equations,

• Typeside,

• Attributes, Schema Equations

e : Emp ⊢ e.mgr.dep = e.dep : Dept

Emp Int () e : Emp ⊢ e.mgr.mgr = e.mgr : Emp

Dept Str (Int, Int) d : Dept ⊢ d .sec.dep = d : Dept

() (Str, Str) e : Emp ⊢ e.mgr.sal = e.sal + 100 : Int

mgr

sal

dep ename

succ

0

sec

dname

+

“a”,...,“z” ∪

Note: We typically do not denote the typeside operations. They are

understood from the definition of Ty.
22 / 44

The Algebraic Data Model

So an algebraic schema presentation looks like the following:

Emp Int

Dept Str

mgr

sal

dep enamesec

dname

We want semantics to reflect this structure.

23 / 44

The Algebraic Data Model

Def: Given categories C,D, a bipartite category3 E : C −7−→ D consists of

a category E equipped with a functor π : E → 2 such that π−1(0) = C

and π−1(1) = D.

Thus if U is a schema presentation, then we obtain a bipartite category

LUM :

Entity category︷︸︸︷
LUeM −7−→

Typeside︷︸︸︷
JTyK

This inspires the following definition.

3Equivalently a profunctor

24 / 44

The Algebraic Data Model

Def: Given a fixed finite product category T, a schema consists of a

bipartite category

U : Ue −7−→ T,

such that the inclusion T ↪→ U preserves finite products4.

An instance on U is a functor I : U → Set that preserves the finite

products of T.

We can define schema presentations and instance presentations as before.

This allows us to input schemas and presentations into a computer.

4Also called an algebraic profunctor in [Sch+17]

25 / 44

The Algebraic Data Model

In the algebraic model, instances can now display data other than

labelled nulls, while still having incomplete information.

Example:
IΓ = (e0, e1, e2 : Emp, d0, d1 : Dept)

IE =


e0.ename = “Alice”, e1.ename = “Bob”, e2.ename = “Charlie”,

d0.dname = “CS”, d1.dname = “Math”,

e0.mgr = e0, e1.mgr = e2, e2.mgr = e2,

. . .



Emp mgr dep sal ename

e0 e0 d0 100 “Alice”

e1 e2 d1 e1.sal “Bob”

e2 e2 d1 e2.sal “Charlie”

Dept sec dname

d0 e0 “CS”

d1 e2 “Math”

26 / 44

The Algebraic Data Model

Now in order to really call ourselves database theorists, we need to be

able to query our data.

Idea of Proqueries: Profunctors between algebraic schemas.

Def: Given a schema U and u ∈ U, let y(u) denote the U-instance

given by

y(u)(u′) = U(u, u′).

Call this the representable instance on u.

Can be presented very easily:

y(u) = J⟨
1 generator︷︸︸︷
x : u |

no equations︷︸︸︷
∅ ⟩K

27 / 44

The Algebraic Data Model

Def: Given schemas U and V, a (strict) proquery is a functor

P : Uop → VInst, such that P(t) = y(t), for every t ∈ Ty, where y(t) is

the representable instance on t.

In general, we allow proqueries to have P(t) ∼= y(t). However, every

proquery is isomorphic to a strict proquery.

Think of analogue of profunctor as P : Cop → SetD with an extra twist

due to attributes.

28 / 44

The Algebraic Data Model

Easier to understand using presentations.

Proquery P : “Select the name and (salary + 50) of all employees who

are their own manager”

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

Int Emp Int e.mgr = e

NewEmp

Str Dept Str

mgr

sal

dep ename

newsal
e

newname

sec

dname

29 / 44

The Algebraic Data Model

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

This gives a diagram of U-instance presentations.

y(Int) P(NewEmp) y(Str)newsal newname

⟨n : Int |∅⟩ ⟨e : Emp | e.mgr = e⟩ ⟨s : Str |∅⟩newsal newname

newsal = (n 7→ [e : Emp ⊢ e.sal + 50 : Int])

newname = (s 7→ [e : Emp ⊢ e.ename : Str])

30 / 44

The Algebraic Data Model

Given a proquery P : U −7−→ V, get a functor

ΓP : VInst→ UInst

This is called the evaluation functor. Defined for I ∈ VInst and u ∈ Ũ

by

ΓP(I)(u) = VInst(P(u), I)

It has a left adjoint Λ, called co-evaluation.

Thm[Sch+17, Thm 8.10] If F : VInst→ UInst is a functor such that

F (I)(t) ∼= I(t) and is a right adjoint, then there exists a proquery P

such that F ∼= ΓP.

31 / 44

The Algebraic Data Model

Proquery P : U −7−→ V

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

V -Instance I

Emp mgr dep sal ename

e0 e0 d0 100 “Alice”

e1 e2 d1 e1.sal “Bob”

e2 e2 d1 e2.sal “Charlie”

Dept sec dname

d0 e0 “CS”

d1 e2 “Math”

U-Instance ΓP(I)

NewEmp newname newsal

e0 “Alice” 150

e2 “Charlie” e2.sal + 50

32 / 44

New Work

New Work

Given proqueries P : U −7−→ V and Q : V −7−→W, we can compose them by

setting

(P⊙ Q)(u) =

∫ v∈V

P(u, v) · Q(v)

taken in the category WInst. Analogous to subquery unnesting or view

unfolding in database theory.

However, in [Sch+17] and [SW17], two inequivalent notions of proquery

presentation are given.

• Called bimodule presentations in [Sch+17], and

• Called uberflowers in [SW17].

A composition operation for uberflowers is sketched, but never proven to

be semantically correct.

A composition operation for bimodule presentations is not given.

33 / 44

New Work

It turns out that a “semantically correct” and finite-preserving

composition operation cannot be given for bimodule presentations!

This motivated us to write “Presenting Profunctors” [RMM24].

New Contribution: Give fully specified definition of proquery

presentation and prove their correctness, i.e. define a composition

operation P ⊛ Q such that LP ⊛ QM ∼= LPM⊙ LQM, and this preserves

finiteness of the presentations.

34 / 44

New Work

New Contribution: We introduce praqueries. These are similar to

proqueries using the following analogy:

proqueries ∼ conjunctive queries

praqueries ∼ unions of conjunctive queries

Def: Given schemas U and V, a praquery P : U −7−→ V consists of

• an instance P0 : UInst such that P0(t) = ∗ for all t ∈ Ty,

• a proquery P1 :
∫
P0 −7−→ V.

Given a praquery P, get an evaluation functor ΓP : VInst→ UInst by

ΓP(I)(u) =
∑

x∈P0(u)

VInst(P1(x), I).

35 / 44

New Work

Praquery P : “Select the name and (salary + 50) of all employees who

are their own manager OR the name and salary of all employees in the

Math department”

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

UNION

SELECT e’.ename AS newname, e’.sal AS newsal,

FROM e’ : Emp,

WHERE e’.dep.dname = “Math”;

36 / 44

New Work

Praquery P : “Select the name and (salary + 50) of all employees who

are their own manager OR the name and salary of all employees in the

Math department”

V -Instance I

Emp mgr dep sal ename

e0 e0 d0 100 “Alice”

e1 e2 d1 50 “Bob”

e2 e2 d1 100 “Charlie”

Dept sec dname

d0 e0 “CS”

d1 e2 “Math”

U-Instance EvalP(I)

NewEmp newname newsal

e0 “Alice” 150

e2 “Charlie” 150

e’1 “Bob” 50

e’2 “Charlie” 100

37 / 44

New Work

In our new work we:

• Give a definition of praquery presentation, their semantics and a

composition operation.

• Prove correctness of composition of praquery presentations.

• Prove that praqueries can equivalently be described by those

functors P : VInst→ UInst that preserve type-algebras and are

parametric right adjoint/prafunctors.

Def: A functor F : C → D where C has a terminal object 1 is called a

parametric right adjoint if in the factorization

C
F1−→ D/F (1)

Σ−→ D

the functor F1 has a right adjoint.

These kinds of functors have very interesting properties and show up in

many places in category theory: [Sha21], [GK12], [NS23].

38 / 44

New Work

Thank you!

Questions? Comments? Email me at eminichiello67@gmail.com

Check out implementation of this math using the CQL language at

https://www.categoricaldata.net/

39 / 44

mailto:eminichiello67@gmail.com
https://www.categoricaldata.net/

References i

References

[Are+14] Marcelo Arenas et al. Foundations of data exchange.

Cambridge University Press, 2014.

[BS81] François Bancilhon and Nicolas Spyratos. “Update

semantics of relational views”. ACM Transactions on

Database Systems (TODS) 6.4 (1981), pp. 557–575.

[Cod70] Edgar F Codd. “A relational model of data for large

shared data banks”. Communications of the ACM 13.6 (1970),

pp. 377–387.

40 / 44

References ii

[GK12] Nicola Gambino and Joachim Kock. “Polynomial functors

and polynomial monads”. Mathematical Proceedings of the

Cambridge Philosophical Society 154.1 (Sept. 2012), pp. 153–192.

issn: 1469-8064. doi: 10.1017/s0305004112000394. url:

http://dx.doi.org/10.1017/S0305004112000394.

[JD94] Michael Johnson and Christopher NG Dampney. “On the

value of commutative diagrams in information

modelling”. Algebraic Methodology and Software Technology

(AMAST’93) Proceedings of the Third International Conference

on Algebraic Methodology and Software Technology, University of

Twente, Enschede, The Netherlands 21–25 June 1993. Springer.

1994, pp. 45–58.

41 / 44

https://doi.org/10.1017/s0305004112000394
http://dx.doi.org/10.1017/S0305004112000394

References iii

[JR02] Michael Johnson and Robert Rosebrugh. “Sketch data

models, relational schema and data specifications”.

Electronic Notes in Theoretical Computer Science 61 (2002),

pp. 51–63.

[JRW00] Michael Johnson, Robert Rosebrugh, and RJ Wood.

“Entity-relationship models and sketches”. Journal Theory

and Applications of Categories (2000).

[LS90] S Kazem Lellahi and Nicolas Spyratos. “Towards a

categorical data model supporting structured objects

and inheritance”. International East/West Database Workshop.

Springer. 1990, pp. 86–105.

[NS23] Nelson Niu and David I. Spivak. Polynomial Functors: A

Mathematical Theory of Interaction. 2023. arXiv:

2312.00990 [math.CT].

42 / 44

https://arxiv.org/abs/2312.00990

References iv

[PLF22] Evan Patterson, Owen Lynch, and James Fairbanks.

“Categorical data structures for technical computing”.

Compositionality: the open-access journal for the mathematics of

composition 4 (2022).

[RMM24] Gabriel Goren Roig, Joshua Meyers, and Emilio Minichiello.

Presenting Profunctors. 2024. arXiv: 2404.01406 [math.CT].

[Ros] Robert Rosebrugh. Implementing database design (and

manipulation) categorically. url:

https://www.appliedcategorytheory.org/wp-

content/uploads/2017/09/Rosebrugh-Implementing-

database-design-and-manipulation-categorically.pdf.

[RW91] Robert Rosebrugh and RJ Wood. “Relational databases

and indexed categories”. Proceedings of the International

Category Theory Meeting 1991, CMS Conference Proceedings.

Vol. 13. 1991, pp. 391–407.

43 / 44

https://arxiv.org/abs/2404.01406
https://www.appliedcategorytheory.org/wp-content/uploads/2017/09/Rosebrugh-Implementing-database-design-and-manipulation-categorically.pdf
https://www.appliedcategorytheory.org/wp-content/uploads/2017/09/Rosebrugh-Implementing-database-design-and-manipulation-categorically.pdf
https://www.appliedcategorytheory.org/wp-content/uploads/2017/09/Rosebrugh-Implementing-database-design-and-manipulation-categorically.pdf

References v

[Sch+17] Patrick Schultz et al. “Algebraic Databases”. Theory and

Applications of Categories 32.16 (2017), pp. 547–619.

[Sha21] Brandon Shapiro. Familial Monads as Higher Category

Theories. 2021. arXiv: 2111.14796 [math.CT].

[Spi12] David I Spivak. “Functorial data migration”. Information

and Computation 217 (2012), pp. 31–51.

[SW15] David I Spivak and Ryan Wisnesky. “Relational

foundations for functorial data migration”. Proceedings of

the 15th Symposium on Database Programming Languages. 2015,

pp. 21–28.

[SW17] Patrick Schultz and Ryan Wisnesky. “Algebraic data

integration”. Journal of Functional Programming 27 (2017).

44 / 44

https://arxiv.org/abs/2111.14796

	The Functorial Data Model
	The Algebraic Data Model
	New Work
	References

