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Introduction

• Going to talk about some WIP in categorical database theory.

• This work expands the algebraic model of categorical database

theory developed in “Algebraic Databases” [Sch+17] and “Algebraic

Data Integration” [SW17].

• (Some of) the main results:

• Introduce (non-strict) proqueries, data transformations similar to

conjunctive queries,

• Prove correctness of proquery presentation composition algorithm

(building off of a similar algorithm for uberflower composition in

[SW17]),

• Introduce praqueries, data transformations similar to unions of

conjunctive queries,

• Introduce and prove correctness of praquery presentation

composition algorithm.
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Categorical Database Theory: the story so far

• 1970 - Relational database theory is born [Cod70]

• Beginning of overlap between DB and CT1 - [BS81], [LS90],

[RW91], [JD94]

• Sketch Data Model (Rosebrugh, Johnson) - [JRW00], [JR02]

• Modern Iteration -

• Spivak (2012) - Functorial Data Migration [Spi12]

• Spivak, Wisnesky (2015) - Relational Foundations for Functorial

Data Migration [SW15]

• Schultz, Wisnesky (2017) - Algebraic Data Integration [SW17]

• Schultz, Vasilakopoulou, Wisnesky, Spivak (2017) - Algebraic

Databases [Sch+17]

• Lynch, Patterson, Fairbanks - Categorical data structures for

technical computing [PLF22]

1References from Rosebrugh’s talk [Ros]
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Categorical Database Theory: the story so far

• 1970 - Relational database theory is born [Cod70]

• Beginning of overlap between DB and CT2 - [BS81], [LS90],

[RW91], [JD94]

• Sketch Data Model (Rosebrugh, Johnson) - [JRW00], [JR02]

• Modern Iteration -

• Spivak (2012) - Functorial Data Migration [Spi12]

• Spivak, Wisnesky (2015) - Relational Foundations for Functorial

Data Migration [SW15]

• Schultz, Wisnesky (2017) - Algebraic Data Integration [SW17]

• Schultz, Vasilakopoulou, Wisnesky, Spivak (2017) - Algebraic

Databases [Sch+17]

• Lynch, Patterson, Fairbanks - Categorical data structures for

technical computing [PLF22]

2References from Rosebrugh’s talk [Ros]
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The Functorial Data Model



The Functorial Data Model

Let us quickly recall the Functorial Data Model [Spi12].

Database Schema ←→ (small) Category C

Database Instance ←→ Copresheaf I : C → Set
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The Functorial Data Model

Really what we are interested in are category presentations.

A cat pres. C consists of sets

Sort(C ), Fun(C ), and Eq(C ).

Example:

mgr.dep = dep

Emp mgr.mgr = mgr

Dept sec.dep = 1Dept

mgr

dep sec
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The Functorial Data Model

Really what we are interested in are category presentations.

A cat pres. C consists of sets

Sort(C ), Fun(C ), and Eq(C ).

Example:

mgr.dep = dep

Emp mgr.mgr = mgr

Dept sec.dep = 1Dept

mgr

dep sec

Note: Equations are between paths, written p =C q and composition is

written left to right.
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The Functorial Data Model

Given a category presentation C , we let LC M denote the category it

presents. We also call LC M the semantics of C . Its objects are the sorts

of C and its morphisms are the paths in C , modulo equations.

More formally LC M(c , c ′) is the set of paths from c to c ′ modulo the

provable equality relation ≈C , defined as follows:

p =C q

p ≈C q p ≈C p

p ≈C q

q ≈C p

p ≈C q q ≈C r

p ≈C r

f : c → c ′ p ≈C q : c ′ → c ′′

f .p ≈C f .q

f : c ′ → c ′′ p ≈C q : c → c ′

p.f ≈C q.f
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The Functorial Data Model

We have the following sets of morphisms

LC M(Emp,Dept) = {[dep] = [dep.sec.dep] = [mgr.dep] = [mgr.mgr.dep]} ,

LC M(Dept,Emp) = {[sec] = [sec.dep.sec], [sec.mgr]}

Example:

mgr.dep = dep

Emp mgr.mgr = mgr

Dept sec.dep = 1Dept

mgr

dep sec
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The Functorial Data Model

Can define schema/category presentation morphisms F : C → D by

functions F0 : Sort(C )→ Sort(D) and F1 : Fun(C )→ Path(D). Let F

denote the extension of F1 to paths.

We require that if p =C q, then F (p) ≈C F (q).

mgr.dep = dep

f .g = f .f .g A Emp mgr.mgr = mgr

B Dept sec.dep = 1Dept

f

F

g

mgr

dep sec

F (f .g) ̸= F (f .f .g), but F (f .g) ≈C F (f .f .g)

mgr.dep ̸= mgr.mgr.dep, but mgr.dep ≈C mgr.mgr.dep
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The Functorial Data Model

Get a category CatPr with semantics functor

L−M : CatPr→ Cat

Can also define instance presentations.

mgr.dep = dep

Emp mgr.mgr = mgr

∗ sec.dep = 1Dept

Dept e.dep = d

mgr

dep

e

d

sec
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The Functorial Data Model

An instance presentation I consists of a collection of generators and

equations. We write I = ⟨IΓ | IE ⟩.

Example:

I = ⟨e : Emp, d : Dept | e.dep = d⟩

mgr.dep = dep

Emp mgr.mgr = mgr

∗ sec.dep = 1Dept

Dept e.dep = d

mgr

dep

e

d

sec
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The Functorial Data Model

Given an instance presentation

I = ⟨e : Emp, d : Dept | e.dep = d⟩

we can display it using tables:

Emp mgr dep

e e.mgr d

e.mgr e.mgr d

d.sec d.sec.mgr d

d.sec.mgr d.sec.mgr d

Dept sec

d d.sec

These are analogous to relational tables of incomplete information

[Are+14, Section 2.3], also called labelled nulls.
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The Functorial Data Model

Given an instance presentation I on a schema presentation C , we obtain

semantics JI K : LC M→ Set by setting

JI K(c) = {∗ → c}/ ≈Eq(C)∪IE

Morphisms of instance presentations φ : I → J over a schema

presentation C require ∗ to be sent to ∗ and are the identity on C .

Get category C InstPr and semantics functor

J−K : C InstPr→ SetLCM
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The Functorial Data Model

Note however, that there is no actual “data” in our tables. We merely

keep track of primary keys and foreign keys.

Emp mgr dep

e e.mgr d

e.mgr e.mgr d

d.sec d.sec.mgr d

d.sec.mgr d.sec.mgr d

Dept sec

d d.sec

To add in “data”, we use the Algebraic Model [Sch+17], [SW17].
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The Algebraic Data Model



The Algebraic Data Model

An algebraic signature Σ consists of sets:

Sort(Σ), and Fun(Σ),

But now, function symbols are allowed to have higher arity.

We say f : (s1, . . . , sn)→ s has arity n.

We call 0-ary function symbols constant symbols.

Example: Algebraic signature for groups ΣGrp

Sort(ΣGrp) = {G},
Fun(ΣGrp) = {m : (G ,G )→ G , e : ()→ G , i : G → G}
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The Algebraic Data Model

We can visualize function symbols as follows

G G () G

m

G G G

e i

We can build terms by putting these function symbols together

G

m

G i m G

() e
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The Algebraic Data Model

We use a convenient notation for these terms. For example:

G

m

G i m G

() e

Can be written as

x , y : G ⊢ m(m(x , i(y)), e) : G
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The Algebraic Data Model

Use the terminology:

Term︷ ︸︸ ︷
Context︷ ︸︸ ︷
x , y : G ⊢ m(m(x , i(y)), e) :

Sort︷︸︸︷
G

An algebraic presentation T consists of an algebraic signature

(Sort(T ),Fun(T )) and a set Eq(T ) of equtions between terms

Example: Algebraic presentation of groups TGrp

Sort(TGrp) ={G},
Fun(TGrp) ={m : (G ,G )→ G , e : ()→ G , i : G → G}
Eq(TGrp) ={[x , y , z : G ⊢ m(m(x , y), z) = m(x ,m(y , z)) : G ] ,

[x : G ⊢ m(x , e) = x ] , [x : G ⊢ m(e, x) = x ]

[x : G ⊢ m(x , i(x)) = e] , [x : G ⊢ m(i(x), x) = e]}
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The Algebraic Data Model

If T is an algebraic presentation, we can define an equivalence relation

≈T on terms, similar to category presentations.

Let JT K denote the category whose objects are contexts, and morphisms

are terms modulo ≈T .

The function symbols produce morphisms

G × G
m−→ G , ∗ e−→ G , G

i−→ G

Morphisms of algebraic presentations F : T → T ′

Sorts s 7→ Sorts F (s)

Function Symbols f 7→ Terms F (f )

Equations t =T t ′ 7→ Provable Equations F (t) ≈T ′ F (t ′)

Semantics gives a functor J−K : AlgPr→ FPCat.
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The Algebraic Data Model

Let us fix an algebraic presentation Ty, that we call the typeside.

Example:
Sort(Ty) = {Str, Int},
Fun(Ty) = {+ : (Int, Int)→ Int, succ : Int→ Int, 0 : ()→ Int,

∪ : (Str,Str)→ Str, “a”, . . . , “z” : ()→ Str}

Now let us define an algebraic schema presentation.
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The Algebraic Data Model

An algebraic schema presentation U over a fixed typeside Ty, consists of

• Entityside: Entities, Foreign Keys, Entity Equations,

• Typeside,

• Attributes, Schema Equations

e : Emp ⊢ e.mgr.dep = e.dep : Dept

Emp Int () e : Emp ⊢ e.mgr.mgr = e.mgr : Emp

Dept Str (Int, Int) d : Dept ⊢ d .sec.dep = d : Dept

() (Str, Str) e : Emp ⊢ e.mgr.sal = e.sal + 100 : Int

mgr

sal

dep ename

succ

0

sec

dname

+

“a”,...,“z” ∪
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The Algebraic Data Model

An algebraic schema presentation U over a fixed typeside Ty, consists of

• Entityside: Entities, Foreign Keys, Entity Equations,

• Typeside,

• Attributes, Schema Equations

e : Emp ⊢ e.mgr.dep = e.dep : Dept

Emp Int () e : Emp ⊢ e.mgr.mgr = e.mgr : Emp

Dept Str (Int, Int) d : Dept ⊢ d .sec.dep = d : Dept

() (Str, Str) e : Emp ⊢ e.mgr.sal = e.sal + 100 : Int

mgr

sal

dep ename

succ

0

sec

dname

+

“a”,...,“z” ∪

Note: We typically do not denote the typeside operations. They are

understood from the definition of Ty.
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The Algebraic Data Model

So an algebraic schema presentation looks like the following:

Emp Int

Dept Str

mgr

sal

dep enamesec

dname

We want semantics to reflect this structure.
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The Algebraic Data Model

Def: Given categories C,D, a bipartite category3 E : C −7−→ D consists of

a category E equipped with a functor π : E → 2 such that π−1(0) = C

and π−1(1) = D.

Thus if U is a schema presentation, then we obtain a bipartite category

LUM :

Entity category︷︸︸︷
LUeM −7−→

Typeside︷︸︸︷
JTyK

This inspires the following definition.

3Equivalently a profunctor
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The Algebraic Data Model

Def: Given a fixed finite product category T, a schema consists of a

bipartite category

U : Ue −7−→ T,

such that the inclusion T ↪→ U preserves finite products4.

An instance on U is a functor I : U → Set that preserves the finite

products of T.

We can define schema presentations and instance presentations as before.

This allows us to input schemas and presentations into a computer.

4Also called an algebraic profunctor in [Sch+17]
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The Algebraic Data Model

In the algebraic model, instances can now display data other than

labelled nulls, while still having incomplete information.

Example:
IΓ = (e0, e1, e2 : Emp, d0, d1 : Dept)

IE =


e0.ename = “Alice”, e1.ename = “Bob”, e2.ename = “Charlie”,

d0.dname = “CS”, d1.dname = “Math”,

e0.mgr = e0, e1.mgr = e2, e2.mgr = e2,

. . .



Emp mgr dep sal ename

e0 e0 d0 100 “Alice”

e1 e2 d1 e1.sal “Bob”

e2 e2 d1 e2.sal “Charlie”

Dept sec dname

d0 e0 “CS”

d1 e2 “Math”
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The Algebraic Data Model

Now in order to really call ourselves database theorists, we need to be

able to query our data.

Idea of Proqueries: Profunctors between algebraic schemas.

Def: Given a schema U and u ∈ U, let y(u) denote the U-instance

given by

y(u)(u′) = U(u, u′).

Call this the representable instance on u.

Can be presented very easily:

y(u) = J⟨
1 generator︷︸︸︷
x : u |

no equations︷︸︸︷
∅ ⟩K
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The Algebraic Data Model

Def: Given schemas U and V, a (strict) proquery is a functor

P : Uop → VInst, such that P(t) = y(t), for every t ∈ Ty, where y(t) is

the representable instance on t.

In general, we allow proqueries to have P(t) ∼= y(t). However, every

proquery is isomorphic to a strict proquery.

Think of analogue of profunctor as P : Cop → SetD with an extra twist

due to attributes.
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The Algebraic Data Model

Easier to understand using presentations.

Proquery P : “Select the name and (salary + 50) of all employees who

are their own manager”

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

Int Emp Int e.mgr = e

NewEmp

Str Dept Str

mgr

sal

dep ename

newsal
e

newname

sec

dname
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The Algebraic Data Model

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

This gives a diagram of U-instance presentations.

y(Int) P(NewEmp) y(Str)newsal newname

⟨n : Int |∅⟩ ⟨e : Emp | e.mgr = e⟩ ⟨s : Str |∅⟩newsal newname

newsal = (n 7→ [e : Emp ⊢ e.sal + 50 : Int])

newname = (s 7→ [e : Emp ⊢ e.ename : Str])

30 / 44



The Algebraic Data Model

Given a proquery P : U −7−→ V, get a functor

ΓP : VInst→ UInst

This is called the evaluation functor. Defined for I ∈ VInst and u ∈ Ũ

by

ΓP(I)(u) = VInst(P(u), I)

It has a left adjoint Λ, called co-evaluation.

Thm[Sch+17, Thm 8.10] If F : VInst→ UInst is a functor such that

F (I)(t) ∼= I(t) and is a right adjoint, then there exists a proquery P

such that F ∼= ΓP.
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The Algebraic Data Model

Proquery P : U −7−→ V

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

V -Instance I

Emp mgr dep sal ename

e0 e0 d0 100 “Alice”

e1 e2 d1 e1.sal “Bob”

e2 e2 d1 e2.sal “Charlie”

Dept sec dname

d0 e0 “CS”

d1 e2 “Math”

U-Instance ΓP(I )

NewEmp newname newsal

e0 “Alice” 150

e2 “Charlie” e2.sal + 50
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New Work



New Work

Given proqueries P : U −7−→ V and Q : V −7−→W, we can compose them by

setting

(P⊙ Q)(u) =

∫ v∈V

P(u, v) · Q(v)

taken in the category WInst. Analogous to subquery unnesting or view

unfolding in database theory.

However, in [Sch+17] and [SW17], two inequivalent notions of proquery

presentation are given.

• Called bimodule presentations in [Sch+17], and

• Called uberflowers in [SW17].

A composition operation for uberflowers is sketched, but never proven to

be semantically correct.

A composition operation for bimodule presentations is not given.
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New Work

It turns out that a “semantically correct” and finite-preserving

composition operation cannot be given for bimodule presentations!

This motivated us to write “Presenting Profunctors” [RMM24].

New Contribution: Give fully specified definition of proquery

presentation and prove their correctness, i.e. define a composition

operation P ⊛ Q such that LP ⊛ QM ∼= LPM⊙ LQM, and this preserves

finiteness of the presentations.
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New Work

New Contribution: We introduce praqueries. These are similar to

proqueries using the following analogy:

proqueries ∼ conjunctive queries

praqueries ∼ unions of conjunctive queries

Def: Given schemas U and V, a praquery P : U −7−→ V consists of

• an instance P0 : UInst such that P0(t) = ∗ for all t ∈ Ty,

• a proquery P1 :
∫
P0 −7−→ V.

Given a praquery P, get an evaluation functor ΓP : VInst→ UInst by

ΓP(I)(u) =
∑

x∈P0(u)

VInst(P1(x), I).
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New Work

Praquery P : “Select the name and (salary + 50) of all employees who

are their own manager OR the name and salary of all employees in the

Math department”

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

UNION

SELECT e’.ename AS newname, e’.sal AS newsal,

FROM e’ : Emp,

WHERE e’.dep.dname = “Math”;
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New Work

Praquery P : “Select the name and (salary + 50) of all employees who

are their own manager OR the name and salary of all employees in the

Math department”

V -Instance I

Emp mgr dep sal ename

e0 e0 d0 100 “Alice”

e1 e2 d1 50 “Bob”

e2 e2 d1 100 “Charlie”

Dept sec dname

d0 e0 “CS”

d1 e2 “Math”

U-Instance EvalP(I )

NewEmp newname newsal

e0 “Alice” 150

e2 “Charlie” 150

e’1 “Bob” 50

e’2 “Charlie” 100
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New Work

In our new work we:

• Give a definition of praquery presentation, their semantics and a

composition operation.

• Prove correctness of composition of praquery presentations.

• Prove that praqueries can equivalently be described by those

functors P : VInst→ UInst that preserve type-algebras and are

parametric right adjoint/prafunctors.

Def: A functor F : C → D where C has a terminal object 1 is called a

parametric right adjoint if in the factorization

C
F1−→ D/F (1)

Σ−→ D

the functor F1 has a right adjoint.

These kinds of functors have very interesting properties and show up in

many places in category theory: [Sha21], [GK12], [NS23].
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New Work

Thank you!

Questions? Comments? Email me at eminichiello67@gmail.com

Check out implementation of this math using the CQL language at

https://www.categoricaldata.net/
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