
Introduction to Categorical Database Theory

Emilio Minichiello

CUNY CityTech



Categories



Categories

A category is a directed multigraph which has a composition
operation on arrows.

a c

b d

1a

g

f

1c

h

1b

k

1d

We call the nodes here objects, and we refer to the arrows as
morphisms. Every object u has an identity morphism
1u : u Ñ u.

1



Categories

We can compose morphisms. For example we have f : a Ñ b
and k : b Ñ d, so composition gives us a new morphism
f.k : a Ñ d.

a c

b d

1a

g

f
f.k

1c

h

1b

k

1d

Note: Composition is usually written as k ˝ f rather than f.k.

2



Categories

Some examples of categories:

• The category Set, whose objects are sets and whose
morphisms are functions,

• The category Top, whose objects are topological spaces
and whose morphisms are continuous functions,

• If pP,ďq is a partially ordered set, then we can think of it as
a category, whose objects are the elements of P and where
there is a unique morphism p Ñ q if and only if p ď q.

3



Categories

We can also generate categories freely from small amounts of
data.

Emp

Dept

mgr

dep sec

The category above has two objects (Emp and Dept) and
infinitely many morphisms

1Emp, 1Dept,mgr, mgr.mgr, mgr.mgr.mgr, . . . ,

dep, dep.sec, dep.sec.dep, . . . , sec, sec.mgr, sec.mgr.dep, . . .

4



Categories

We can also quotient by equations between morphisms

mgr.mgr = mgr

Emp mgr.dep = dep

Dept sec.dep = 1Dept

mgr

dep sec

Let E denote the resulting category.

5



Categories

Now the category E has only finitely many morphisms:

rmgrs “ rmgr.mgrs, rdeps, rdep.secs, rdep.sec.deps “ rdeps

rsecs, rsec.mgr.deps “ rsec.deps “ r1Depts

6



Categories

Given two categories C and D, a functor F : C Ñ D is like a
graph homomorphism, it assigns objects to objects and
morphisms to morphisms in such a way that respects identity
morphisms and compositions.

7



Categories

[Spi12] puts forward the following idea:

• Database schemas can be thought of as finitely generated
categories C, and

• Database instances can be thought of as functors
I : C Ñ Set.

Let’s try and understand the second part of this
correspondence.

8



Categories

Let us consider the category E from before

mgr.mgr = mgr

Emp mgr.dep = dep

Dept sec.dep = 1Dept

mgr

dep sec

A functor I : E Ñ Set consists of the following data. Sets

IpEmpq, IpDeptq

and functions

Ipmgrq : IpEmpq Ñ IpEmpq, Ipdepq : IpEmpq Ñ IpDeptq

Ipsecq : IpDeptq Ñ IpEmpq
9



Categories

How do we think of this as a database?

Let IpEmpq be the set of employees, and IpDeptq be the set of
departments

IpEmpq “ tAlice,Bob, Charlieu

IpDeptq “ tMath, CSu

Then Ipmgrq is a function assigning employees to their
managers, and similarly for Ipdepq and Ipsecq.

Ipmgrq “ pAlice ÞÑ Alice,Bob ÞÑ Charlie, Charlie ÞÑ Charlieq

Ipdepq “ pAlice ÞÑ Math,Bob ÞÑ CS, Charlie ÞÑ CSq

Ipsecq “ pMath ÞÑ Alice, CS ÞÑ Charlieq

10



Categories

We can summarize all of this information into tables.

Emp mgr dep
Alice Alice Math
Bob Charlie CS

Charlie Charlie CS

Dept sec
Math Alice
CS Charlie

The columns dep and sec are usually called foreign keys in
database theory.

11



Data Migration



Data Migration

So we have:

• Database Schemas Ø finitely generated categories
• Database Instances Ø functors to Set

Now for something new:

• functors between schemas.

12



Data Migration

Consider the following functor
mgr1.mgr1 “ mgr1 mgr.mgr = mgr

Emp1 Emp mgr.dep = dep

Dept sec.dep = 1Dept

C E

mgr1

F

mgr

dep sec

F

where F sends Emp1 to Emp and mgr1 to mgr.

If I : E Ñ Set is a functor, then we can precompose I with F to
obtain a new functor

C F
ÝÑ E I

ÝÑ Set.

13



Data Migration

For example, with F as above, then for the database I : E Ñ Set
from before

Emp mgr dep
Alice Alice Math
Bob Charlie CS

Charlie Charlie CS

Dept sec
Math Alice
CS Charlie

Precomposing I with F gives the functor pI ˝ Fq : C Ñ Set

Emp’ mgr’
Alice Alice
Bob Charlie

Charlie Charlie

14



Data Migration

In other words, by precomposing our database instance I with
the functor F, we can take a projection of our database.

In fact, this construction defines a functor

SetE SetC∆F

it takes a functor I : E Ñ Set to a functor pI ˝ Fq : C Ñ Set.

However, this functor ∆F always has left and right adjoint
functors, given by Kan extension.

15



Data Migration

The functor ∆F and its left and right adjoints

SetE SetC∆F

ΣF

ΠF

%
%

In general, ΣF and ΠF can be quite complicated to compute.
However in special cases, we can understand them fully.

16



Data Migration

For example, taking F : C Ñ E from before, let J : C Ñ Set be
the database instance given by

Emp’ mgr’
Arthur Bailey
Bailey Bailey
Chuck Arthur
Dolores Bailey

Then computing ΣFpJq gives a database instance on E , which
looks like

Emp mgr dep
Arthur Bailey Arthur.dep
Bailey Bailey Bailey.dep
Chuck Arthur Chuck.dep
Dolores Bailey Dolores.dep

Dept sec
Arthur.dep Arthur.dep.sec
Bailey.dep Bailey.dep.sec
Chuck.dep Chuck.dep.sec
Dolores.dep Dolores.dep.sec

17



Data Migration

This database ΣFpJq implements a feature known in database
theory as labelled nulls. In other words, the bold elements
below are placeholders, indicating that we don’t know what
should be put there.

Emp mgr dep
Arthur Bailey Arthur.dep
Bailey Bailey Bailey.dep
Chuck Arthur Chuck.dep
Dolores Bailey Dolores.dep

Dept sec
Arthur.dep Arthur.dep.sec
Bailey.dep Bailey.dep.sec
Chuck.dep Chuck.dep.sec
Dolores.dep Dolores.dep.sec

This functor ΣF can be computed with what is called the chase
algorithm in database theory, see [MSW22] for more
information on this connection.

18



Data Migration

The other functor ΠF acts very similarly to joins in database
theory. For example, consider the functor G : A Ñ B

SSNs SSNs

D1 String D2 D String

Int Int

SSN1

Name1 Name2
G

Sal2

SSN
Name

Sal

which sends D1,D2 ÞÑ D. Suppose we have a database instance
K on A:

D1 Name1 SSN1
ID 403 Bailey 123456789
ID 333 Arthur 456321987
ID 123 Chuck 987654321

D2 Name2 Sal2
ID A Alice 150
ID B Arthur 100
ID C Bailey 120
ID D Dolores 90

19



Data Migration

So for the database instance K on the schema A

D1 Name1 SSN1
ID 403 Bailey 123456789
ID 333 Arthur 456321987
ID 123 Chuck 987654321

D2 Name2 Sal2
ID a Alice 150
ID b Arthur 100
ID c Bailey 120
ID d Dolores 90

We obtain a new database instance ΠGpKq on B

Emp Name SSN Sal
(ID 403, ID c) Bailey 123456789 120
(ID 333, ID b) Arthur 456321987 100

This is precisely the join of the two database tables above.

20



Data Migration

In fact, all of the usual operations one does in SQL can be
implemented using categorical operations.

Theorem (Wisnesky-Spivak [SW15]): Every SPCU operator
(select, projection, cartesian-product and union) can be
implemented using compositions of ∆F,ΣF,ΠF for appropriate
functors F.

21



Data Migration

I worked at a startup company, Conexus, which developed a
specialized query programming language called CQL
(Categorical Query Language) using this theory.

22



Data Migration

The basic idea of Conexus’ business model is the following
problem:

• Big company has massive database instance I (many TBs)
on schema S ,

• Big company decides to change schema S to S 1,
• database instance I needs to be migrated to schema S 1.

This process is sometimes called database refactoring. It can
be an extremely expensive and error-prone process.

One use of CQL is to verify that this process can go through
without errors, ensuring the company doesn’t waste hundreds
of thousands of dollars.

23



Caveats



Caveats

There are two major issues with the story I’ve told so far:

• we never talked about attributes, and
• using ∆,Σ,Π is too unpredictable and computationally
difficult to use in practice.

The solutions to these problems are as follows:

• Use algebraic theories to model attributes,
• Use profunctors to model queries, rather than ∆,Σ,Π.
Mathematically this is equivalent, but has fascinating
computational consequences.

24



Caveats

In real life, we want to differentiate between actual data, like 3
or ”Emilio” and labelled nulls. In the previous model, there is
no distinction, everything is just a set. This leads to the
attribute problem.

Figure 1: From [SW17]

25



Caveats

Now one needs to separate pieces of schemas into entities
and attributes.

e : Emp $ e.mgr.dep “ e.dep : Dept

Emp Int pq e : Emp $ e.mgr.mgr “ e.mgr : Emp

Dept Str pInt, Intq d : Dept $ d.sec.dep = d : Dept

pq pStr, Strq e : Emp $ e.mgr.sal “ e.sal ` 100 : Int

mgr

sal

dep ename

succ

0

sec
dname

`

“a”,...,“z” Y

We can also add in new equations.

26



Caveats

We can then generate database instances on these schemas
using presentations, very similar to group presentations.
Example:

Generators: pe0, e1, e2 : Emp,d0,d1 : Deptq

Equations:

$

’

’

’

’

’

&

’

’

’

’

’

%

e0.ename “ “Alice”, e1.ename “ “Bob”, e2.ename “ “Charlie”,
d0.dname “ “CS”, d1.dname “ “Math”,
e0.mgr “ e0, e1.mgr “ e2, e2.mgr “ e2,

. . .

,

/

/

/

/

/

.

/

/

/

/

/

-

Emp mgr dep sal ename
e0 e0 d0 100 “Alice”
e1 e2 d1 e1.sal “Bob”
e2 e2 d1 e2.sal “Charlie”

Dept sec dname
d0 e0 “CS”
d1 e2 “Math”

27



Caveats

This is called the algebraic data model, defined and studied in
[SW17] and [Sch+17].

This is the actual model of database theory that is
implemented in CQL. However, to query a database instance,
we use profunctors.

28



Caveats

Idea: A relation from a set A to a set B is a function
R : Aˆ B Ñ 2. Equivalently a subset R Ď Aˆ B.

We can compose relations R Ď Aˆ B and S Ď Bˆ C with

pS ˝ Rq “ tpa, cq : Db P B such that pa,bq P R and pb, cq P Su.

A profunctor P : C ÝÞÝÑ D is a functor P : Cop ˆ D Ñ Set.

We can compose profunctors P : C ÝÞÝÑ D, Q : D ÝÞÝÑ E using what
is called a coend:

pQ ˝ Pqpc, eq “

ż dPD
Ppc,dq ˆ Qpd, eq.

29



Caveats

P : “Select the name and (salary + 50) of all employees who are
their own manager”

SELECT e.ename AS newname, e.sal + 50 AS newsal,

FROM e : Emp,

WHERE e.mgr = e;

Int Emp Int e.mgr “ e

NewEmp

Str Dept Str

mgr

sal

dep ename

newsal
e

newname

sec

dname

30



Caveats

Mathematically, a profunctor P : C ÝÞÝÑ D is a functor

P : Cop ˆ D Ñ Set

but this is equivalent to a functor

P : Cop Ñ SetD.

This process is called currying, named after mathematician
Haskell Curry.

Strangely enough, while these two descriptions are
mathematically equivalent, they are not computationally
equivalent in a certain precise sense.

31



Caveats

This is the content of my most recent paper “Presenting
Profunctors”, [RMM24] joint with Gabriel Goren Roig and Joshua
Meyers. It was accepted into the proceedings of ACT 2024.

I gave a talk on this paper at the New York City Category Theory
Seminar, you can find a video of it here.

We define two different ways to give a “presentation” of a
profunctor, inspired by the two equivalent descriptions from
before. We call them the uncurried and curried profunctor
presentations.

32

https://www.youtube.com/watch?v=0bquvu-kWRA


Caveats

Theorem([RMM24]) Given two finite curried profunctors
presentations P : C ÝÞÝÑ D and Q : D ÝÞÝÑ E, then there exists a
finite curried presentation pQ ˚ Pq whose semantics LQ ˚ PM
agrees with LQM ˝ LPM.
However, there exist finite uncurried profunctor presentations
P and Q such that there does not exist a finite uncurried
profunctor presentation R with LRM – pLQM ˝ LPMq.

33



Caveats

I think that category theory provides a powerful tool to reason
about computational problems, and database theory is one
area of computer science where such tools can be very helpful.

Thank you for listening!

Questions?

Comments?

Feel free to email me.

34

mailto:eminichiello67@gmail.com


References i

References

[MSW22] Joshua Meyers, David I Spivak, and Ryan Wisnesky.
“Fast left kan extensions using the chase”. Journal of
Automated Reasoning 66.4 (2022), pp. 805–844.

[RMM24] Gabriel Goren Roig, Joshua Meyers, and
Emilio Minichiello. Presenting Profunctors. 2024.
arXiv: 2404.01406 [math.CT].

[Sch+17] Patrick Schultz et al. “Algebraic Databases”. Theory
and Applications of Categories 32.16 (2017), pp. 547–619.

35

https://arxiv.org/abs/2404.01406


References ii

[Spi12] David I Spivak. “Functorial data migration”.
Information and Computation 217 (2012), pp. 31–51.

[SW15] David I Spivak and Ryan Wisnesky. “Relational
foundations for functorial data migration”.
Proceedings of the 15th Symposium on Database
Programming Languages. 2015, pp. 21–28.

[SW17] Patrick Schultz and Ryan Wisnesky. “Algebraic data
integration”. Journal of Functional Programming 27
(2017).

36


	Categories
	Data Migration
	Caveats
	References

